B. Hong and V.K. Prasanna
[1] G. Bell & J. Gray, What’s next in high-performance computing?Communications of the ACM, 45(2), 2002, 91–95. doi:10.1145/503124.503129 [2] I. Foster & C. Kesselman (eds.), The grid: Blueprint for anew computing infrastructure (San Francisco, CA: Morgan Kaufmann, 1999). [3] T.D. Braun, H.J. Siegel, & N. Beck, A comparison of elevenstatic heuristics for mapping a class of independent tasksonto heterogeneous distributed computing systems, Journal ofParallel and Distributed Computing, 61, 2001, 810–837. doi:10.1006/jpdc.2000.1714 [4] G. Chen, F.C.M. Lau, & C.-L. Wang, Building a scalableweb server with global object space support on heterogeneousclusters, 3rd IEEE International Conference on Cluster Computing (CLUSTER’01), Newport Beach, CA, October 2001, 313–320. [5] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, & R.F.Freund, Dynamic mapping of a class of independent tasksonto heterogeneous computing systems, Journal of Paralleland Distributed Computing, 59(2), 1999, 107–131. doi:10.1006/jpdc.1999.1581 [6] J.D.P. Rolim (ed.), Parallel and distributed processing, 15thIPDPS 2000 Workshops, Cancun, Mexico, May 1–5, 2000,Proc., Vol. 1800 of Lecture Notes in Computer Science, Springer, 2000. [7] K. Kennedy, M. Mazina, J.M. Crummey, K. Cooper, L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert, D. Angulo, I. Foster, D. Gannon, L. Johnsson, C. Kesselman, R. Aydt, D. Reed, J. Dongarra, S. Vadhiyar, & R. Wolski, Toward a framework for preparing and executing adaptive grid programs, Workshop on Next Generation Systems, held in conjunction with International Parallel and Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale, FL, April 2002. [8] L. Rauchwerger, N. Amato, & J. Torrellas, SmartApps: Anapplication centric approach to high performance computing,Proc. of the 13th Annual Workshop on Languages and Compilers for Parallel Computing (LCPC), Yorktown Height, NY, 2000, 82–96. [9] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, & U. Nagashima, Overview of a performance evaluation system forglobal computing scheduling algorithms, 8th IEEE International Symposium on High Performance Distributed Computing(HPDC ’99), Redondo Beach, CA, August 1999, 97–104. [10] H. Casanova, SimGrid: A toolkit for the simulation of application scheduling, Proceedings of the 1st IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2001), Brisbane, Australia, May 2001, 430–441. doi:10.1109/CCGRID.2001.923223 [11] R. Buyya & M. Murshed, GridSim: A toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing, The Journal of Concurrency and Computation: Practice and Experience (CCPE), Wiley Press, 14(13–15), 2002, 1175–1220. doi:10.1002/cpe.710 [12] D.G. Brian, NetLogger: A toolkit for distributed system performance analysis, Journal of Parallel and Distributed Computing, 47, 1997, 185–197. doi:10.1006/jpdc.1997.1411 [13] S. Ali, H.J. Siegel, M. Maheswaran, & D. Hensgen, Taskexecution time modeling for heterogeneous computing systems,9th Heterogeneous Computing Workshop, Cancun, Mexico,May 2000, 185–199. [14] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin,& H. Song, PARSEC: A parallel simulation environment forcomplex systems, IEEE Computer, 31(10), 1998, 77–85. doi:10.1109/2.722293 [15] Z.K. Baker & V.K. Prasanna, Performance modeling and interpretive simulation of PIM architectures and applications, 8th International Euro-Par Conference (Euro-Par 2002), Paderborn, Germany, August 2002, 157–161. [16] B. Hong & V.K. Prasanna, Adaptive matrix multiplication in heterogeneous environments, 2002 International conference on Parallel and Distributed Systems, Taiwan, December 2002, 129-136. doi:10.1109/ICPADS.2002.1183389
Important Links:
Go Back