Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
Complex Valued Recurrent Neural Networks for Blind Equalization
R. Pandey
References
[1] S.I. Amari & A. Cichocki, Adaptive blind signal processing:Neural network approaches, Proc. IEEE, 86(10), 1998, 2026–2048.
doi:10.1109/5.720251
[2] S. Chen, G.J. Gibson, C.F.N. Cowan, & P.M. Grant, Adaptive equalization of finite nonlinear channels using multilayerperceptrons, Signal Processing, 20(2), 1990, 107–109.
doi:10.1016/0165-1684(90)90122-F
[3] T.W.S. Chow & Y. Fang, Neural blind deconvolution of MIMOnoisy channels, IEEE Trans. Circuits and Systems I, 48(1),2001, 116–120.
doi:10.1109/81.903195
[4] H. Lin & M. Amin, A dual mode technique for improved blindequalization for QAM signals, IEEE Signal Processing Letters,10(2), 2003, 29–31.
doi:10.1109/LSP.2002.806699
[5] M.N. Thirion & E. Moreau, Generalized criterion for blind mul-tivariate signal equalization, IEEE Signal Processing Letters,9(2), 2002, 72–74.
doi:10.1109/97.991142
[6] Y. Fang & T.W.S. Chow, Blind equalization of a noisy channelby linear neural network, IEEE Trans. Neural Networks, 10(4),1999, 925–929.
doi:10.1109/72.774261
[7] H.H. Yang, On-line blind equalization via on-line blind separation, Signal Processing, 68(2), 1998, 271–281.
doi:10.1016/S0165-1684(98)00077-2
[8] S. Haykin (Ed.), Blind deconvolution (Englewood Cliffs, NJ:Prentice-Hall, 1994).
[9] S. Haykin, Adaptive filter theory, 3rd ed. (Upper Saddle River,NJ: Prentice-Hall, 1996).
[10] C. You & D. Hong, Nonlinear blind equalization schemes usingcomplex valued multilayer feedforward neural networks, IEEETrans. Neural Networks, 9(6), 1998, 1442–1455.186
doi:10.1109/72.728394
[11] A. Cichocki & R. Unbehauen, Neural networks for optimizationand signal processing (Chichester: John Wiley & Sons, 1994).
[12] S. Haykin, Neural networks: A comprehensive foundation(Upper Saddle River, NJ: Prentice-Hall, 1994).
[13] F.L. Luo & R. Unbehauen, Applied neural networks for signalprocessing (Cambridge: Cambridge University Press, 1997).
[14] S. Haykin, Neural networks expand SP’s horizons, IEEE SignalProcessing Magazine, 3, 1996, 24–49.
doi:10.1109/79.487040
[15] G. Kechriotis, E. Zervas, & E.S. Manolakos, Using recurrentneural networks for adaptive communication channel equaliza-tion, IEEE Trans. Neural Networks, 5(2), 1994, 267–278.
doi:10.1109/72.279190
[16] R. Parisi, D. Di Elio Claudio, G. Orlandi, & B.D. Rao,Fast adaptive digital equalization by recurrent neural network,IEEE Trans. Signal Processing, 45(11), 1997, 2731–2739.
doi:10.1109/78.650099
[17] J.G. Proakis, Digital communications, 3rd ed. (Singapore:McGraw Hill, 1995).
[18] M. Ghosh, Blind decision feedback equalization for terrestrialtelevision receivers, Proc. IEEE, 86(10), 1998, 2070–2081.
doi:10.1109/5.720253
[19] S. Ong, C. You, S. Choi, & D. Hong, A decision feedbackrecurrent neural equalizer as an infinite impulse response filter,IEEE Trans. Signal Processing, 45(11), 1997, 2851–2858.
doi:10.1109/78.650112
[20] C.R. Johnson, P. Schniter, T.J. Endres, J.D. Behm, D.R.Brown, & R.A. Casas, Blind equalization using the constantmodulus criterion: A review, Proc. IEEE, 86(10), 1998, 1927–1950.
doi:10.1109/5.720246
[21] G. Picchi & G. Prati, Blind equalization and carrier recoveryusing a “stop-and-go decision directed algorithm, IEEE Trans.Communications, 35(9), 1987, 877–887.
doi:10.1109/TCOM.1987.1096877
Important Links:
Abstract
DOI:
10.2316/Journal.205.2005.3.205-4286
From Journal
(205) International Journal of Modelling and Simulation - 2005
Go Back