P.K. Dash and M.H. Naeem
[1] L. Gyugyi, Unified power flow concept for flexible AC transmission systems, IEE Proc. C, 139 (4), 1992, 323–332. [2] K.R. Padiyar & A.M. Kulkarni, Control design and simulation of UnifiedPower flow controller, IEEE Trans. on PowerDelivery, 13 (4), 1998, 1348–1354. doi:10.1109/61.714507 [3] Z. Huaang, Y.X. Ni, C.M. Shen, F.F. Wu, S. Chen, & B. Zhang,Application of Unified Power Flow controller in interconnectedpower systems: Modeling, interface, control strategy, and casestudy, IEEE Trans. on Power Systems, 15 (2), 2000, 811–816. doi:10.1109/59.867179 [4] P.K. Dash, S. Mishra, & G. Panda, A radial basis functionneural network controller for UPFC, IEEE Trans. on PowerSystems, 15 (4), 2000, 1293–1299. doi:10.1109/59.898104 [5] H.F. Wang, A unified model for the analysis of FACTS devicesin damping power system oscillations, Part 3: Unified PowerFlow Controller, IEEE Trans. on Power Delivery, 15 (3), 2000,978–983. doi:10.1109/61.871362 [6] J.M. Ramirez & I. Coronado, Allocation of UPFC to enhancedamping of power oscillations, Electric Power and EnergySystems, 24, 2002, 355–362. doi:10.1016/S0142-0615(01)00047-3 [7] M. Noroozian, G. Anderson, & K. Tomsovic, Robust, neartime-optimal control of power system oscillations with fuzzylogic, IEEE Trans. On Power Delivery, 11 (1), 1996, 393–400. doi:10.1109/61.484039 [8] Y. Hsu & C. Cheng, Design of fuzzy power system stabilizers for multi-machine power systems, IEE Proc. Generation,Transmission, & Distribution, 137 (2), 1990, 233–238. [9] M.A.M. Hassan, O.P. Malik, & G.S. Hope, A fuzzy logic basedstabilizer for a synchronous machine, IEEE Trans. on EnergyConversion, 6 (3), 1991, 407–414. doi:10.1109/60.84314 [10] M.A.M. Hassan & O.P. Malik, Implementation and laboratorytest results for a fuzzy logic based elf-tuned PSS, IEEE Trans.on Energy Conversion, 8 (2), 1993, 221–228. doi:10.1109/60.222708 [11] P.K. Dash, S. Mishra, & A.C. Liew, Fuzzy-logic-based VARstabilizer for power system control, IEE Proc. Generation,Transmission, & Distribution, 142 (6), 1995, 618–624. doi:10.1049/ip-gtd:19951870 [12] S. Limying Charoyen, U.D. Annakkage, & N.C. Pahlawathitha,Fuzzy logic based unified power flow controllers for transientstability improvement, IEE Proc. Generation, Transmission,& Distribution, 145 (6), 1998, 225–232. [13] W. Li, Design of fuzzy logic proportional plus conventionalintegral derivative controller, IEEE Trans. on Fuzzy Systems,6 (4), 1998, 449–463. doi:10.1109/91.728430 [14] P. Kundur, M. Klein, G.J. Rojers, & M. Zwyno, Applicationsof power system stabilizers for enhancement of overall systemstability, IEEE Trans. on Power Systems, 4 (2), 1989, 614–622. doi:10.1109/59.193836 [15] P. Kundur, Power system stability and control (McGraw Hill,1994).Appendix 1Generator Dynamic EquationsThe dynamics of each synchronous machine is modelled bythree differential equations given by:δ·= ω − ω0; δ·=dδdtω·=πH(Pm − Pe)e ·q(Efd0 + ∆Efd − eq− (xd − xd)id)τ d0and−6.0 ≤ Efd ≤ 6.0Pe = eqiq + (xd − xd)id iqThe PSS control output is given byupss = KδsTQ1 + sTQ1+ sT11 + sT2whereKδ = 0.24, TQ = 0.4, T2 = 0.3Appendix 2Modelling of UPFCLet us assume that an ideal series connected voltage sourceof magnitude Vc and reactance Xse is present between twobuses (s, r) in a power system as shown in Fig. A2.Figure A.1. Voltage source representation of series con-verter.The Norton’s equivalent of the circuit shown in Fig.A.1 is represented in Fig. A.2.Figure A.2. Current source representation of series con-verter.Ise = −jBse Vc in parallel with the line where Bse = 1/Xse.213The current source Ise corresponds to the injectionpowers Ss and Sr where:Ss = Vs(Ise)∗(A.1)Sr = Vr(Ise)∗(A.2)The injection power Ss and Sr are simplified to:Ss = Vs(jBseρV jαse )∗= −Bseρ|Vse|2sin(α) − jBseρ|Vse|2cos(α) (A.3)Sr = Vr(−jBseρV jαse )∗= Bseρ|Vs| · |Vs| sin(θ + α)+ jBseρ|Vs| · |Vr| cos(θsr + α) (A.4)whereVc = ρVse ejαand θsr = θs − θr.Based on the explanation above, the injection modelof a series connected voltage source can be represented bytwo dependent loads as shown in Fig. A.3.Figure A.3. UPFC injection model.The apparent power supplied by the series voltagesource converter is:Sconv2 = VcI∗sr = ρejαVsVs + Vc − Vrj Xse∗(A.5)SoPconv2 = Bseρ|Vs| · |Vr| sin(θsr + α) − Bseρ|Vs|2sin(α)(A.6)Qconv2 = −Bseρ|Vs| · |Vr| cos(θsr + α) + Bseρ|Vs|2cos(α)+ Bseρ2|Vs|2(A.7)Appendix 3Generator Data (Pbase = 1000 MVA)Equivalent gen. Generator 1 Generator 2 Generator 3Type Thermal Hydro HydroCapacity 5500 MVA 1800 MVA 1800 MVAInertia 4 s 4 s 4 sconstant (H)d-axis 2.00 p.u. 1.00 p.u. 1.00 p.u.reactance (Xd)q-axis 1.90 p.u. 0.60 p.u. 0.60 p.u.reactance (Xq)d-axis transient 0.25 p.u. 0.30 p.u. 0.30 p.u.reactance (Xq)Field time 6.00 s 6.00 s 6.00 sconstant (τdo)AVR gains (Ke) 30 10 10AVR time 0.05 s 0.05 s 0.05 sconstant (τe)Transmisssion lines (double circuit)L1 = 350 km, x = 0.20 Ω/km (compensated line)L2 = 50 km, x = 0.34 Ω/km, L3 = 50 km, x = 0.34 Ω/kmLoads (p.u.) in admittance formYL1 = 6.0 − j 1.2, YL2 = 0.1 − j 0.010, YL3 = 0.1 − j 0.010,YL4 = 1.0 − j 0.2UPFC dataxse = 0.0006, Vcr max = 0.1, Vcr min = −0.1, Vcp max = 0.1,Vcp min = −0.1, Vdc base = 31.113 kV, C = 5500 µFsController DataFuzzy-PL1p1 = 2.0, L1r1 = 2.0, L1p2 = 2.0, L1r2 = 2.0, L2p1 = 2.0,L2r1 = 2.0, L2p2 = 2.0, L2r2 = 2.0, Cp1 = 0.5, Cr1 = 1.5,Cp2 = 0.5, Cr2 = 1.5 and λ = 0.5.PI controllerKpp1 = 0.01,Kip1 = 0.4, Kpr1 = 0.01,Kir1 = 0.01, Kir1 = 0.4,Kpp2 = 0.01, Kip2 = 0.4, Kpr2 = 0.01, Kir2 = 0.4The second subscript of all parameters in the controllerdata corresponds to either phase (p) or reactive (r) voltagecomponent and the third to the UPFC number.214
Important Links:
Go Back