A BIBLIOGRAPHICAL SURVEY OF EVOLUTIONARY COMPUTATION APPLICATIONS IN POWER SYSTEMS (1994–2003)

R.C. Bansal

References

  1. [1] A.S. Fraser, Simulation of genetic systems by automaticdigital computers, Australian Journal of Biological Sciences,10, 1957, 484–491.
  2. [2] G.D. Friedman, Digital simulation of an evolutionary process,General Systems Yearbook, 4, 1959.
  3. [3] W.W. Blendsoe, The use of biological concepts in the analytical study of systems, paper presented at the ORSA-TIMSNational Meeting, San Francisco, November 1961.
  4. [4] H.J. Bremermann, Optimization through evolution and recombination, in M.C. Yovits, G.T. Jacobi, & G.D. Goldstein(Eds.), Self-organization systems (Washington, DC: SpartanBooks, 1962).
  5. [5] L.J. Fogel, A.J. Owens, & M.J. Walsh, Artificial intelligencethrough simulated evolution (New York: John Wiley, 1966).
  6. [6] J.H. Holland, Adaption in natural and artificial systems (AnnArbor, MI: University of Michigan Press, 1975).
  7. [7] D.E. Goldberg, Genetic algorithms in search, optimizationand machine learning (New York: Addison-Wesley, 1989).
  8. [8] R.C. Bansal, T.S. Bhatti, & D.P. Kothari, Artificial intelligence techniques for monitoring and control of power systems: An overview, Proc. Int. Conf. Control, Instrumentation, and Information Communication, Calcutta, December2001, 91–95.
  9. [9] R.C. Bansal, Literature survey on expert system applications to power systems (1990–2001), International Journal ofEngineering Intelligent Systems, 11(3), 2003, 103–112.
  10. [10] W.R.A. Ibrahim & M.M. Morcos, Artificial intelligence andadvanced mathematical tools for power quality applications:A survey, IEEE Trans. Power Delivery, 17(2), 2002, 668–673. doi:10.1109/61.997958
  11. [11] Y.H. Song & M.R. Irving, Optimization methods for electricpower systems, II: Heuristic optimization methods, IEE PowerEngineering Journal, 15(3), 2001, 151–160. doi:10.1049/pe:20010307
  12. [12] M.R. Irving & Y.H. Song, Optimization techniques for electricpower systems, I: Mathematical optimization methods, IEEPower Engineering Journal, 14(5), 2000, 245–254. doi:10.1049/pe:20000509
  13. [13] Y.H. Song (Ed.), Modern optimization techniques in powersystems (Dordrecht, The Netherlands: Kluwer, 1999).
  14. [14] L.L. Lai, Intelligent system applications in power engineering(New York: John Wiley and Sons, 1998).
  15. [15] V. Miranda, D. Srinivasan, & LM. Proenca, Evolutionarycomputation in power systems, Electrical Power and EnergySystems, 20(2), 1998, 89–98. doi:10.1016/S0142-0615(97)00040-9
  16. [16] M.A. Laughton, Artificial intelligence techniques in powersystems, in K. Wardwick, A. Ekwue, & R. Aggarwal (Eds.),Artificial intelligence techniques in power systems, IEE PowerEngineering Series, 22, London, 1997.
  17. [17] K. Wardwick, A. Ekwue, & R. Aggarwal, Artificial intelligencetechniques in power systems, IEE Power Engineering Series,22, London, 1997.
  18. [18] T. Black, U. Hammel, & H.P. Schwefel, Evolutionary computation: Comments on the history and current state, IEEETrans. Evolutionary Computation, 1(1), 1997, 3–17. doi:10.1109/4235.585888
  19. [19] Dhabbagchi, R.D. Christie, G.W. Rosanwald, & C.C. Liu,AI applications in power systems, Expert Intelligent Systemsand Their Applications, 12(1), 1997, 58–66.
  20. [20] D. Srinivasan, W. Fushuan, C.S. Chang, & A.C. Liew, Asurvey of applications of evolutionary computing to powersystems, Proc. Int. Conf. Intelligent Systems Applications toPower Systems (ISAP), Orlando, FL, February 1996, 35–41. doi:10.1109/ISAP.1996.501041
  21. [21] V. Mirinda, D. Srinivasan, & L.M. Proenca, Evolutionarycomputation in power systems, Proc. 12th PSCC, Dresden,Germany, August 1996, 19–23.
  22. [22] J.T. Alander, An indexed bibliography of genetic algorithm inpower engineering, Report Series 94-1: Power, February 21,1996, ftp://ftp.uwasa.fi/cs/report94-1/gaPOWERbib.ps.Z.
  23. [23] S. Rahman, Artificial intelligence in electric power systems:A survey of the Japanese industry, IEEE Trans. on PowerSystems, 8(3), 1993, 1211–1218.Power System Planning doi:10.1109/59.260875
  24. [24] E. Diaz-Dorado, J. Cidras, & E. Miguez, Application ofevolutionary algorithms for the planning of urban distributionnetworks of medium voltage, IEEE Trans. on Power Systems,17(3), 2002, 879–884. doi:10.1109/TPWRS.2002.800975
  25. [25] H.K.M. Youssef, Dynamic transmission planning using aconstrained genetic algorithm, Electrical Power and EnergySystems, 23(8), 2001, 857–862. doi:10.1016/S0142-0615(01)00003-5
  26. [26] H.A. Gil & E.L. da Silva, A reliable approach for solvingthe transmission network expansion planning problem usinggenetic algorithms, Electric Power System Research, 58(1),2001, 45–51. doi:10.1016/S0378-7796(01)00102-X
  27. [27] W.M. Lin, C.D. Yang, & M.T. Tsay, Distribution systemplanning with evolutionary programming and a reliability cost218model, IEE Proc. Generation, Transmission & Distribution,147(6), 2000, 336–341. doi:10.1049/ip-gtd:20000714
  28. [28] J.B. Park, Y.M. Park, & K.Y. Lee, An improved geneticalgorithm for transmission network expansion planning, IEEETrans. on Power Systems, 15(3), 2000, 916–922. doi:10.1109/59.871713
  29. [29] E.L. da Silva, H.A. Gill, & J.M. Areiza, Transmission networkexpansion planning under an improved genetic algorithm,IEEE Trans. on Power Systems, 15(3), 2000, 1168–1175. doi:10.1109/59.871750
  30. [30] P.M.S. Carvalho, L.A.F.M. Ferreira, F.G. Lobo, & L.M.F.Barruncho, Distribution network expansion planning underuncertainty: A hedging algorithm in an evolutionary approach, IEEE Trans. on Power Delivery, 15(1), 2000, 412–416. doi:10.1109/61.847282
  31. [31] M.R. Irving, H.M. Chebbo, & S.O. Orero, Transmissionnetwork planning using generic algorithms, in Y.H. Song(Ed.), Modern optimization techniques in power systems(Dordrecht, The Netherlands: Kluwer, 1999).
  32. [32] Y.M. Park, J.B. Park, & J.R. Won, A hybrid genetic algorithm/dynamic programming to optimal long term generation planning, International Journal of Electrical Power andEnergy Systems, 20(4), 1998, 295–303. doi:10.1016/S0142-0615(97)00070-7
  33. [33] Y. Hayashi & K. Nara, Scenario selection by genetic algorithmby power resource planning, International Journal of Powerand Energy Systems, 18(2), 1998, 142–146.
  34. [34] R.A. Gallego, A. Monticelli, & R. Romero, Transmissionsystem expansion planning by an extended genetic algorithm,IEE Proc. Generation, Transmission & Distribution, 145(3),1998, 329–335. doi:10.1049/ip-gtd:19981895
  35. [35] P.M.S. Carvalho, L.A.F.M. Ferreira, F.G. Lobo, & L.M.F.Barruncho, Optimal distribution network expansion planningunder uncertainty by evolutionary decision convergence, International Journal of Electrical Power and Energy Systems,20(2), 1998, 125–129. doi:10.1016/S0142-0615(97)00037-9
  36. [36] H.M. Chebbo & M.R. Irving, Applications of genetic algorithm to transmission planning, Proc. IEE Genetic Algorithm in Engineering Systems: Innovations and Applications,University of Strathclyde, UK, 1997, 388–393.
  37. [37] R.A. Gallego, A.B. Alves, A. Monticelli, & R. Romero,Parallel simulated annealing applied to long term transmissionnetwork expansion planning, IEEE Trans. on Power Systems,12(1), 1997, 181–188. doi:10.1109/59.574938
  38. [38] L.L. Lai, J.T. Ma, K.P. Wong, M. Zhao, & H. Sasaki,Application of evolutionary programming to transmissionsystem planning, Proc. IEE Japan Power and Energy, Osaka,Japan, 1996, 147–152.
  39. [39] E.C. Yeh, S.S. Venkata, & Z. Sumic, Improved distributionsystem planning using computational evolution, IEEE Trans.on Power Systems, 11(2), 1996, 668–674. doi:10.1109/59.496137
  40. [40] Y. Fukuyama & H.D. Chiang, A parallel genetic algorithmfor generation expansion planning, IEEE Trans. on PowerSystems, 11(2), 1996, 955–961. doi:10.1109/59.496180
  41. [41] R. Romero, R.A. Gallego, & A. Monticelli, Transmissionsystem expansion planning by simulated annealing, IEEETrans. on Power Systems, 11(1), 1996, 364–369. doi:10.1109/59.486119
  42. [42] V. Miranda, J.V. Ranito, & L.M. Proenca, Genetic algorithmsin optimal multistage distribution network planning, IEEETrans. on Power Systems, 9(4), 1994, 1927–1933. doi:10.1109/59.331452
  43. [43] G. Latorre-Bayona & I.J. Periz-Arriaga, Chopin: A heuristicmodel for long term transmission expansion planning, IEEETrans. on Power Systems, 9(4), 1994, 1886–1894. doi:10.1109/59.331446
  44. [44] K. Yoshimoto, K. Yasuda, R. Yokoyama, H. Tanaka, &Y. Akimoto, An approach for transmission expansion planningusing neuro-computing hybridized with GA, Trans. IEE ofJapan, 114-B(10), 1994, 1029–1037.
  45. [45] Y. Fukuyama & Y. Ueki, An application of parallel gasto generation expansion planning using parallel processors,Trans. of IEE Japan, 114-B(12), 1994, 1250–1256.
  46. [46] Y. Fukuyama & H.D. Chiang, A parallel GA for generationexpansion planning, Proc. Int. Conf. ISAP, Montpellier,France, 1994, 161–167.
  47. [47] V. Miranda & L.M. Proenca, GAs and fuzzy models: Anapplication to gas and electricity distribution planning underuncertainty, Proc. 3rd Int. Workshop on Rough Sets and SoftComputing (RSSC), San Jose, CA, 1994, 43–50.Reactive Power/Voltage Control
  48. [48] R.C. Bansal, T.S. Bhatti, & D.P. Kothari, Artificial intelligence techniques for reactive power/voltage control in powersystems: A review, International Journal of Power andEnergy Systems, 23(2), 2003, 81–89.
  49. [49] P.C. Panda, B.S. Chandrasekhar, P.L. Bisi, S. Prasad,G. Srivastava, & S.X. Palathingal, Application of micro genetic algorithm for optimal capacitor placement in distribution system, Proc. Application of Evolutionary Strategies toPower, Signal Processing and Control, Regional EngineeringCollege of Rourkela, India, February 2002, 91–97.
  50. [50] Y. Liu, L. Ma, & J. Zhang, Reactive power optimizationby GA/SA/TS combined algorithms, Electrical Power andEnergy Systems, 24(9), 2002, 765–769. doi:10.1016/S0142-0615(01)00087-4
  51. [51] D. Das, Reactive power compensation for radial distributionnetworks using genetic algorithm, International Journal ofElectrical Power and Energy Systems, 24(7), 2002, 573–581. doi:10.1016/S0142-0615(01)00068-0
  52. [52] S. Baskar, P. Subbaraj, M.V.C. Rao, & S.T. Jayachrista,Optimal capacitor placement in distribution systems usingsequential decomposed genetic algorithm, Journal of theInstitution of Engineers (India), 82(EL-2), 2001, 36–42.
  53. [53] J.R.S. Mantovani, S.A.G. Modesto, & A.V. Garcia, Varplanning using genetic algorithm and linear programming,Proc. IEE-Pt. B, 148(3), 2001, 257–262. doi:10.1049/ip-gtd:20010214
  54. [54] A.M. Delfanti, G.P. Granelli, P. Marannino, & M. Montagna,Optimal capacitor placement using deterministic and geneticalgorithms, IEEE Trans. Energy Conversion, 15(3), 2000,1041–1046.
  55. [55] S.J. Huang, An immune-based optimization methods to capacitor placement in a radial distribution system, IEEETrans. on Power Delivery, 15(2), 2000, 744–749. doi:10.1109/61.853014
  56. [56] G. Levitin, A. Kalyuzhny, A. Shenkman, & M. Chertkov,Optimal capacitor allocation in distribution systems usinga genetic algorithm and a fast energy loss computationtechnique, IEEE Trans. on Power Delivery, 15(2), 2000,623–628. doi:10.1109/61.852995
  57. [57] Y.T. Hsiao & H.D. Chiang, Applying network window schemeand a simulated annealing technique to optimal VAR planning in large-scale power systems, International Journal ofElectrical Power and Energy Systems, 22(1), 2000, 1–8. doi:10.1016/S0142-0615(99)00028-9
  58. [58] J.R. Gomes & O.R. Saavedra, Optimal reactive power dispatchusing evolutionary computation: New extended algorithms,IEE Proc. Generation, Transmission & Distribution, 146(6),1999, 586–592. doi:10.1049/ip-gtd:19990683
  59. [59] A.J. Urdaneta, J.F. Gomez, E. Sorrentino, L. Flores, &R. Diaz, A hybrid genetic algorithm for optimal reactivepower planning based upon successive linear programming,IEEE Trans. on Power Systems, 14(4), 1999, 1292–1298. doi:10.1109/59.801887
  60. [60] T. Ghose, S.K. Goswami, & S.K. Basu, Solving capacitorplacement problems in distribution systems using geneticalgorithms, Electric Machines and Power Systems, 27(4),1999, 429–441. doi:10.1080/073135699269244
  61. [61] T.S. Chung & H.C. Leung, A genetic algorithm approachin optimal capacitor selection with harmonic distortion considerations, International Journal of Electrical Power andEnergy Systems, 21(8), 1999, 561–569. doi:10.1016/S0142-0615(99)00025-3
  62. [62] S.K. Goswami, T. Ghose, & S.K. Basu, An approximatemethod for capacitor placement in distribution system usingheuristics and greedy search technique, Electric Power SystemResearch, 51(3), 1999, 143–151. doi:10.1016/S0378-7796(98)00166-7
  63. [63] T. Ghose, S.K. Goswami, & S.K. Basu, Solution of capacitorplacement problem in distribution system using modifiedgenetic algorithm, Journal of the Institution of Engineers(India), 79(EL-1), 1999, 178–182.
  64. [64] L.L. Lai & J.T. Ma, practical application of evolutionarycomputing to reactive power planning, IEE Proc. Generation,Transmission & Distribution, 145(6), 1998, 753–758. doi:10.1049/ip-gtd:19982368
  65. [65] Q.H. Wu, Y.J. Cao, & J.Y. Wen, Optimal reactive powerdispatch using an adaptive genetic algorithm, Electrical Powerand Energy Systems, 20(8), 1998, 563–569. doi:10.1016/S0142-0615(98)00016-7
  66. [66] K.Y. Lee & F.F. Yang, Optimal reactive power planning usingevolutionary algorithms: A comparative study for evolutionary programming, evolutionary strategy, genetic algorithm,and linear programming, IEEE Trans. on Power Systems,13(1), 1998, 101–108.219 doi:10.1109/59.651620
  67. [67] A. Ekwue, D.T.Y. Cheng, & J.F. Macqueen, Artificial intelligence techniques for voltage control, in K. Wardwick, A. Ekwue, & R. Aggarwal (Eds.), Artificial intelligence techniquesin power systems, IEE Power Engineering Series, 22, London,1997.
  68. [68] K.N. Miu, H.D. Chiang, & D. Darling, Capacitor placement,replacement and control in large-scale distribution systemsby a GA-based two-stage algorithm, IEEE Trans. on PowerSystems, 12(3), 1997, 1160–1166. doi:10.1109/59.630457
  69. [69] L.L. Lai & J.T. Ma, Application of evolutionary programmingto reactive power planning: Comparison with nonlinear pro-gramming approach, IEEE Trans. on Power Systems, 12(1),1997, 198–204. doi:10.1109/59.574940
  70. [70] J.T. Ma & L.L. Lai, Improved genetic algorithm for reactivepower planning, Proc. 12th Power Computational Conf.,Dresden, Germany, August 1996, 499–505.
  71. [71] K.Y. Lee, X. Bai, & Y.M. Park, Optimization method forreactive power planning by using a modified simple geneticalgorithm, IEEE Trans. on Power Systems, 10(4), 1995,1843–1850. doi:10.1109/59.476049
  72. [72] Q.H. Wu & J.T. Ma, Power system optimal reactive powerdispatch using evolutionary programming, IEEE Trans. onPower Systems, 10(3), 1995, 1243–1249. doi:10.1109/59.466531
  73. [73] W.S. Jwo, C.W. Liu, C.C. Liu, & Y.T. Hsiao, Hybrid expertsystem and simulated annealing approach to optimal reactivepower planning, IEE Proc. Generation, Transmission &Distribution, 142(4), 1995, 381–385. doi:10.1049/ip-gtd:19951958
  74. [74] J.T. Ma & L.L. Lai, Optimal reactive power dispatch using evolutionary programming, Proc. IEEE/KTH StockholmPower Tech Int. Symp. on Electric Power Engineering, Stockholm, 1995, 662–667.
  75. [75] A.S. Sundhararajan & A. Pahwa, Optimal selection of capacitor for radial distribution systems using genetic algorithms,IEEE Trans. on Power Systems, 9(3), 1994, 1499–1507. doi:10.1109/59.336111
  76. [76] K. Iba, Reactive power optimization by genetic algorithm,IEEE Trans. on Power Systems, 9(2), 1994, 685–692. doi:10.1109/59.317674
  77. [77] K.S. Swarup, M. Yoshimi, & Y. Izui, Genetic algorithmapproach to reactive power planning in power systems, Proc.5th Annual Conf. of Power and Energy Society IEE Japan,Tokyo, 1994, 119–124.Load Forecasting
  78. [78] M.S. Kandil, S.M. El-Debeiky, & N.E Hasanien, Overviewand comparison of long-term forecasting techniques for a fastdeveloping utility: Part I, Electric Power System Research,58(1), 2001, 11–17. doi:10.1016/S0378-7796(01)00097-9
  79. [79] P.K. Dash, S. Mishra, S. Dash, & A.C. Liew, Geneticoptimization of a self organizing fuzzy-neural network for loadforecasting, Power Engineering Society Winter Meeting, No.2, Columbus, Ohio, January 2000, 1011–1016.
  80. [80] E.T.H. Heng, D. Srinivasan, & A.C. Liew, Short term loadforecasting using genetic algorithm and neural networks, Proc.Int. Conf. Energy Management and Power Delivery (EMPD),Singapore, No. 2, March 1998, 576–581. doi:10.1109/EMPD.1998.702749
  81. [81] G.L. Dong, W.L. Byong, & H.C. Soon, Genetic programmingmodel for long-term forecasting of electric power demand,Electric Power System Research, 40(1), 1997, 17–22. doi:10.1016/S0378-7796(96)01125-X
  82. [82] S. Majithia, L. Kiernan, & J. Hannan, Intelligent systemsfor demand forecasting, in K. Wardwick, A. Ekwue, & R.Aggarwal (Eds.), Artificial intelligence techniques in powersystems, IEE Power Engineering Series, 22, London, 1997.
  83. [83] S.J. Huang & C.L. Huang, Genetic-based Multilayered Perceptron for Taiwan Power System short-term load forecasting,Electric Power System Research, 38(1), 1996, 69–74. doi:10.1016/S0378-7796(96)01065-6
  84. [84] H.T. Yang, C.M. Huang, & C.L. Huang, Identification ofARMAX model for short term load forecasting: An evolutionary approach, IEEE Trans. on Power Systems, 11(1),1996, 403–408. doi:10.1109/59.486125
  85. [85] D.K. Chaturvedi, R.K Mishra, & A. Agarwal, Load forecasting using genetic algorithms, Journal of the Institution ofEngineers (India), 76(EL-3), 1995, 161–165.
  86. [86] H. Kato, Y. Sugai, & T. Kawase, Prediction of daily maximumelectric load by a recurrent neural network using GA, Trans.IEE of Japan, 115-B(8), 1995, 875–882.
  87. [87] T. Maifeld & G. Sheble, Short-term load forecasting by a neural network and a modified genetic algorithm, InternationalJournal of Electrical Power and Energy Systems, 31(3), 1994,147–152.Unit Commitment doi:10.1016/0378-7796(94)90074-4
  88. [88] N.P. Padhy, Genetic algorithm-based machine learning classifier system model for short-term unit commitment problem,International Journal of Power and Energy Systems, 23(1),2003, 49–61.
  89. [89] K.S. Swarup & S. Yamashiro, A genetic algorithm approachto generator unit commitment, International Journal of Electrical Power and Energy Systems, 25(9), 2003, 679–687. doi:10.1016/S0142-0615(03)00003-6
  90. [90] S.R. Paranjothi & V. Balaji, Hybrid genetic algorithm-basedunit commitment, Electric Power Components and Systems,30(10), 2002, 1047–1054. doi:10.1080/15325000290085389
  91. [91] J.M. Arroyo & A.J. Conejo, A parallel repair genetic algorithmto solve the unit commitment problem, IEEE Trans. onPower Systems, 17(4), 2002, 1216–1224. doi:10.1109/TPWRS.2002.804953
  92. [92] W. Xing & F.F. Wu, Genetic algorithm based unit commitment with energy contracts, International Journal of Electrical Power and Energy Systems, 24(5), 2002, 329–336. doi:10.1016/S0142-0615(01)00048-5
  93. [93] C.P. Cheng, C.W. Liu, & C.C. Liu, Unit commitment byannealing-genetic algorithm, International Journal of Electrical Power and Energy Systems, 26(2), 2002, 149–158. doi:10.1016/S0142-0615(01)00024-2
  94. [94] K.S. Swarup & S. Yamashiro, Unit commitment solutionmethodology using genetic algorithm, IEEE Trans. on PowerSystems, 17(1), 2002, 87–91. doi:10.1109/59.982197
  95. [95] C.J. Aldridge, S. Mekee, J.R. Mc Denel, S.J. Gallowak, K.P.Dahal, M.C. Bradley, & J.F. Macqueen, Knowledge-basedgenetic algorithm for unit commitment problem, IEE Proc.Generation, Transmission & Distribution, 146(2), 2001, 146–152. doi:10.1049/ip-gtd:20010022
  96. [96] N.P. Padhy, Unit commitment using hybrid models: Acomparative study for dynamic programming, expert system,fuzzy system and genetic algorithms, International Journal ofElectrical Power and Energy Systems, 23(8), 2001, 827–836. doi:10.1016/S0142-0615(00)00090-9
  97. [97] C.P. Cheng, C.W. Liu, & C.C. Lin, Unit commitment byLagrangian relaxation and genetic algorithms, IEEE Trans.on Power Systems, 15(2), 2000, 707–714. doi:10.1109/59.867163
  98. [98] C.W. Richter, Jr., & G.B. Sheble, A profit based unitcommitment GA for competitive environment, IEEE Trans.on Power Systems, 15(2), 2000 715–721. doi:10.1109/59.867164
  99. [99] S. Huang, Enhancement of thermal unit commitment usingimmune algorithms based optimization approaches, Interna-tional Journal of Electrical Power and Energy Systems, 21(4),1999, 245–252. doi:10.1016/S0142-0615(98)00050-7
  100. [100] K.A. Juste, H. Kita, E. Tanaka, & J. Hasegawa, An evolutionary programming solution to the unit commitment problem,IEEE Trans. on Power Systems, 14(4), 1999, 1452–1459. doi:10.1109/59.801925
  101. [101] A. Rudolf & R. Bayrleithner, A genetic algorithm for solvingthe unit commitment problem of a hydro-thermal powersystem, IEEE Trans. on Power Systems, 14(4), 1999, 1460–1468. doi:10.1109/59.801929
  102. [102] A.H. Mantawy, Y.L. Abdel-Magid, & S.Z. Selim, Integratinggenetic algorithms, tabu search, and simulated annealingfor the unit commitment problem, IEEE Trans. on PowerSystems, 14(3), 1999, 829–836. doi:10.1109/59.780892
  103. [103] A.H. Mantawy, Y.L. Abdel-Magid, & S.Z. Selim, A newgenetic-based tabu search algorithm for unit commitmentproblem, Electric Power System Research, 49(2), 1999, 71–78. doi:10.1016/S0378-7796(98)00045-5
  104. [104] T. Nagata, H. Duo, H. Sasaki, & H. Fujita, A solution methodfor large-scale unit commitment using genetic algorithm,Trans. IEE of Japan, 118-B(4), 1998, 413–419.
  105. [105] S. Sen & D.P. Kothari, Optimal thermal generating unitcommitment: A review, International Journal of ElectricalPower and Energy Systems, 20(7), 1998, 443–451. doi:10.1016/S0142-0615(98)00013-1
  106. [106] A.H. Mentaway, Y.L. Abdel-Magid, & S.Z. Selim, A simulatedannealing algorithm for unit commitment, IEEE Trans. onPower Systems, 13(1), 1998, 197–204. doi:10.1109/59.651636
  107. [107] S.J. Huang & C.L. Huang, Application of genetic-based neuralnetworks to thermal unit commitment, IEEE Trans. on PowerSystems, 12(2), 1997, 654–660.220 doi:10.1109/59.589634
  108. [108] H.T. Yang, P.C. Yang, & C.L. Huang, A parallel algorithmapproach to solving the unit commitment problem: Implementation on the transputer networks, IEEE Trans. on PowerSystems, 12(2), 1997, 661–668. doi:10.1109/59.589638
  109. [109] C.J. Aldridge, J. McDonald, & S. McKee, Unit commitmentfor power system using a heuristically augmented genetic algorithm, Proc. IEE Genetic Algorithms in Engineering Systems:Innovations and Applications, University of Strathclyde, UK,1997, 433–438.
  110. [110] S.O. Orero & M.R. Irving, Large scale commitment using ahybrid genetic algorithm, International Journal of ElectricalPower and Energy Systems, 19(1), 1997, 45–55. doi:10.1016/S0142-0615(96)00028-2
  111. [111] S.O. Orero & M.R. Irving, A combination of genetic algorithmand Lagrangian relaxation decomposition techniques for thegeneration unit commitment problem, Electric Power SystemResearch, 43(3), 1997, 149–156. doi:10.1016/S0378-7796(97)01175-9
  112. [112] S.A. Kazarlis, A.G. Bakirtzis, & V. Petridis, A geneticalgorithm solution to unit commitment problem, IEEE Trans.on Power Systems, 11, 1996, 83–90. doi:10.1109/59.485989
  113. [113] P.C. Yang, H.T. Yang, & C.L. Huang, Solving the unitcommitment problem with a genetic algorithm through aconstraint satisfaction technique, Electric Power SystemsResearch, 37(1), 1996, 55–65. doi:10.1016/0378-7796(96)01036-X
  114. [114] T.T. Maifield & G.B. Sheble, Genetic based unit commitmentalgorithm, IEEE Trans. on Power Systems, 11(3), 1996,1359–1370. doi:10.1109/59.536120
  115. [115] G.B. Sheble, T.T. Maifeld, K. Britting, G. Fahd, & F. Coppinger, Unit commitment by genetic algorithm with penaltymethods and a comparison of Lagrangian search and geneticalgorithm-economic dispatch example, Electrical Power andEnergy Systems, 18(6), 1996, 339–346. doi:10.1016/0142-0615(95)00013-5
  116. [116] T. Ohta, T. Matsui, T. Takata, M. Kato, M. Aoyagi, M.Kunugi, K. Shimada, & J. Nagata, Practical approach to unitcommitment problem using genetic algorithm and Lagrangianrelaxation method, Proc. Int. Conf. ISAP, Orlando, FL,February 1996, 434–440. doi:10.1109/ISAP.1996.501112
  117. [117] U.D. Annakkage, T. Numnonda, & N.C. Pahalawaththa,Unit commitment by parallel simulated annealing, IEE Proc.Generation, Transmission & Distribution, 142(6), 1995, 595–600. doi:10.1049/ip-gtd:19952215
  118. [118] X. Ma, A.A. El-Keib, R.E. Smith, & H. Ma, A geneticalgorithm based approach to thermal unit commitment ofelectric power systems, Electric Power Systems Research,34(1), 1995, 29–36. doi:10.1016/0378-7796(95)00954-G
  119. [119] D. Dasgupter & D.R. McGregor, Thermal unit commitmentusing genetic algorithm, IEE Proc. Electric Power Applica-tions, 141(5), 1994, 459–465.
  120. [120] G.B. Sheble & G.N. Fahd, Unit commitment literature synopsis, IEEE Trans. on Power Systems, 9(1), 1994, 128–135. doi:10.1109/59.317549
  121. [121] G.B. Sheble & T.T. Mayfield, Unit commitment by genetic algorithm and expert system, Electric Power Systems Research,30(2), 1994, 115–121. doi:10.1016/0378-7796(94)90006-X
  122. [122] H. Saitoh, K. Inoue, & J. Toyoda, Genetic algorithm approachto unit commitment, Proc. Int. Conf. ISAP, Montpellier,France, 1994, 583–589.
  123. [123] T.T. Maifeld & G.B. Sheble, Evolution of a unit commitmentschedule using a genetic algorithm, Proc. 26th Annual NorthAmerican Power Symp., vol. 2, Kansas State University,Manhattan, KS, 1994, 583–592.Generator Maintenance Scheduling
  124. [124] M.Y. El-Sharkh, A.A. El-Keib, & H. Chen, A fuzzy evolutionary programming-based solution methodology for security-constrained generation maintenance scheduling, ElectricPower System Research, 67(1), 2003, 67–72. doi:10.1016/S0378-7796(03)00076-2
  125. [125] M.Y. El-Sharkh & A.A. El-Keib, Maintenance scheduling ofgeneration and transmission systems using fuzzy evolutionaryprogramming, IEEE Trans. on Power Systems, 18(2), 2003,862–866. doi:10.1109/TPWRS.2003.811004
  126. [126] Y. Wang & E. Handschin, A new genetic algorithm forpreventive unit maintenance scheduling of power systems,Electrical Power and Energy Systems, 22(5), 2000, 343–348. doi:10.1016/S0142-0615(99)00062-9
  127. [127] C.J. Aldridge, K.P. Dahal, & J.R. McDonald, Genetic algorithm for scheduling generation and maintenance in powersystems, in Y.H. Song (Ed.), Modern optimization techniquesin power systems (Dordrecht, The Netherlands: Kluwer,1999).
  128. [128] S. Huang, A genetic-evolved fuzzy system for maintenancescheduling of generating units, Electrical Power and EnergySystems, 20(3), 1998, 191–195. doi:10.1016/S0142-0615(97)00080-X
  129. [129] H. Kim, Y. Hayashi, & K. Nara, An algorithm for thermalunit maintenance scheduling through combined use of GA,SA and TS, IEEE Trans. on Power Systems, 12(1), 1997,329–335. doi:10.1109/59.574955
  130. [130] H. Kim, K. Nara, M. Gen, A method for maintenancescheduling using GA combined with SA, Computers andIndustrial Engineering, 27, 1994, 477–480.Thermal/Hydrothermal Scheduling doi:10.1016/0360-8352(94)90338-7
  131. [131] H.R. Mashhadi, H.M. Shanechi, & C. Lucas, A new geneticalgorithm with Lamarckian individual learning for generationscheduling, IEEE Trans. on Power Systems, 18(3), 2003,1181–1186. doi:10.1109/TPWRS.2003.814888
  132. [132] N. Sinha, R. Chakrabarti, & P.K. Chattopadhyay, Fast evolutionary programming techniques for short-term hydrothermal scheduling, Electric Power System Research, 66(2), 2003,97–103. doi:10.1016/S0378-7796(03)00016-6
  133. [133] N. Sinha, R. Chakrabarti, & P.K Chattopadhyay, Fast evolu-tionary programming techniques for short-term hydrothermalscheduling, IEEE Trans. on Power Systems, 18(1), 2003,214–220. doi:10.1109/TPWRS.2002.807053
  134. [134] T.D.H. Cau & R.J. Kaye, Evolutionary optimisation methodfor multistorage hydrothermal scheduling, IEE Proc. Generation, Transmission & Distribution, 149(2), 2002, 152–156. doi:10.1049/ip-gtd:20020120
  135. [135] S. Baskar, P. Subbaraj, & M.V.C. Rao, Hybrid evolutionaryprogramming solution to short term hydro thermal schedulingproblem, Journal of the Institution of Engineers (India),82(EL-1), 2002, 236–242.
  136. [136] X. Yuan, Y. Yuan, & Y. Zhang, An improved genetic algorithm for short-term scheduling of hydroelectric systems,International Journal of Power and Energy Systems, 21(2),2001, 81–86.
  137. [137] S.Y.W. Wong, Hybrid simulated annealing/genetic algorithmapproach to short-term hydrothermal scheduling with multiplethermal plants, Electrical Power and Energy Systems, 23(7),2001, 565–575. doi:10.1016/S0142-0615(00)00029-6
  138. [138] P.K. Hota, Short-term hydrothermal scheduling through evolutionary programming technique, Electric Power SystemResearch, 52(2), 1999, 189–196. doi:10.1016/S0378-7796(99)00021-8
  139. [139] H.C. Chang & P.H. Chen, Hydrothermal generation scheduling package: A genetic based approach, IEE Proc. Generation, Transmission & Distribution, 145(4), 1998, 451–457. doi:10.1049/ip-gtd:19981986
  140. [140] S.O. Orero & M.R. Irving, A genetic algorithm modelingframework and solution techniques for short term hydrothermal scheduling, IEEE Trans. on Power Systems, 13(2),1998, 501–518. doi:10.1109/59.667375
  141. [141] K.P. Wong & Y.W. Wong, Hybrid genetic/simulated annealing approach to short-term multiple-fuel-constrained generation scheduling, IEEE Trans. on Power Systems, 12(2), 1997,776–784. doi:10.1109/59.589681
  142. [142] S.O. Orero, Power systems generation scheduling and optimization using evolutionary computing techniques, doctoraldiss., Brunel University, Middlesex, UK, 1996.
  143. [143] D. Srinivasan & A. Tettamanzi, Heuristics-guided evolutionary approach to multiobjective generation scheduling, IEEProc. Generation, Transmission & Distribution, 143(6), 1996,541–545. doi:10.1049/ip-gtd:19960462
  144. [144] P.H. Chan & H.C. Chang, Genetic aided scheduling ofhydraulically coupled plants in hydrothermal coordination,IEEE Trans. on Power Systems, 11(2), 1996, 975–981. doi:10.1109/59.496183
  145. [145] K.P. Wong & Y.W. Wong, Combined genetic algorithm/simulated annealing/fuzzy set approach to short-termgeneration scheduling with take-or-pay fuel contract, IEEETrans. on Power Systems, 11(1), 1996, 128–136. doi:10.1109/59.485994
  146. [146] S.O. Orero & M.R. Irving, A genetic algorithm for generator scheduling in power system, International Journal ofElectrical Power and Energy Systems, 18(1), 1996, 19–26. doi:10.1016/0142-0615(94)00017-4
  147. [147] K.P. Wong & Y.W. Wong, Thermal generator scheduling using hybrid genetic/simulated-annealing approach, IEE Proc.221Generation, Transmission & Distribution, 142(4), 1995, 372–380. doi:10.1049/ip-gtd:19951974
  148. [148] K.P. Wong & Y.W. Wong, Short-term hydrothermal scheduling, Part 1: Simulated annealing approach, IEE Proc. Generation, Transmission & Distribution, 141(5), 1994, 497–501. doi:10.1049/ip-gtd:19941350
  149. [149] K.P. Wong & Y.W. Wong, Short-term hydrothermal schedul-ing, Part 2: Parallel simulated annealing approach, IEEProc. Generation, Transmission & Distribution, 141(5), 1994,502–506.Economic Dispatch doi:10.1049/ip-gtd:19941351
  150. [150] N. Kumarappan & M.R. Mohan, Fuel restricted short termeconomic dispatch using evolutionary programming for utilitysystem, Electrical Power and Energy Systems, 25(10), 2003,821–827. doi:10.1016/S0142-0615(03)00062-0
  151. [151] M. Sudhakaran, S.M.R. Slochan, & S. Jeyadevi, An evolutionary computing technique to combined heat and powereconomic dispatch, Journal of the Institution of Engineers(India), 84(EL-3), 2003, 104–108.
  152. [152] J.R. Won & Y.M. Park, Economic dispatch solutions withpiecewise quadratic cost functions using improved geneticalgorithm, Electrical Power and Energy Systems, 25(5), 2003,355–361. doi:10.1016/S0142-0615(02)00098-4
  153. [153] N. Sinha, N.R. Chakrabarti, & P.K. Chattopadhyay, Evolutionary programming techniques for economic load dispatch,IEEE Trans. on Evolutionary Computation, 7(1), 2003, 83–94. doi:10.1109/TEVC.2002.806788
  154. [154] I.G. Damousis, A.G. Bakirtzis, & P.S. Dokopoulos, Network-constrained economic dispatch using real-coded genetic algorithm, IEEE Trans. on Power Systems, 18(1), 2003, 198–205. doi:10.1109/TPWRS.2002.807115
  155. [155] J. Nanda & R. Badri Narayanan, Application of geneticalgorithm to economic load dispatch with line flow constraints,Electrical Power and Energy Systems, 24(9), 2002, 723–729. doi:10.1016/S0142-0615(02)00002-9
  156. [156] W.M. Wang & C.M. Huang, An evolutionary based waveletnetwork for real-time power dispatch, Electric Power Components and Systems, 30(11), 2002, 1151–1166. doi:10.1080/15325000290085442
  157. [157] W. Ongsakul & J. Tippayachai, Micro genetic algorithmbased on migration and merit order loading solutions tothe constrained economic dispatch problems, InternationalJournal of Electrical Power and Energy Systems, 26(3), 2002,223–231. doi:10.1016/S0142-0615(01)00019-9
  158. [158] J. Tippayachai, W. Ongsakul, & I. Ngamroo, Parallel micro genetic algorithm for constrained economic dispatch, IEEETrans. on Power Systems, 17(3), 2002, 790–797. doi:10.1109/TPWRS.2002.800948
  159. [159] W. Ongsakul & J. Tippayachai, Parallel micro genetic algorithm based on merit order loading solutions for constraineddynamic economic dispatch, Electric Power System Research,61(2), 2002, 77–88. doi:10.1016/S0378-7796(01)00180-8
  160. [160] S. Baskar, P. Subbaraj, & M.V.C. Rao, Hybrid genetic algorithm solution to emission and economic dispatch problems,Journal of the Institution of Engineers (India), 82(EL-1),2002, 243–249.
  161. [161] S.L. Surana & P.S. Bhati, Emission controlled economicgeneration dispatch using genetic algorithm, Journal of theInstitution of Engineers (India), 82(EL-1), 2002, 289–296.
  162. [162] M.T. Tsay, W.M. Lin, & J.L. Lee, Application of evolutionaryprogramming for economic dispatch of cogeneration systemsunder emission constraints, International Journal of ElectricalPower and Energy Systems, 23(8), 2001, 805–812. doi:10.1016/S0142-0615(00)00095-8
  163. [163] C. Sivakamasundri, P.S. Kanan, & S. Kamaraj, Economicdispatch with line flow and emission constraints using geneticalgorithm, Journal of the Institution of Engineers (India),82(EL-4), 2001, 195–199.
  164. [164] S. Baskar, P. Subbaraj, & M.V.C. Rao, Hybrid genetic algorithm solution to economic dispatch problems with multiplefuel options, Journal of the Institution of Engineers (India),82(EL-4), 2001, 177–183.
  165. [165] S. Anudevi, P. Venkatesh, & P.S. Kana, Application ofmicrogenetic algorithm to economic load dispatch, Journal ofthe Institution of Engineers (India), 82(EL-3), 2001, 161–166.
  166. [166] T. Jayabarathi, G. Sadasivam, & V. Ramachandran, Evolutionary programming-based multiarea economic dispatch withtie line constraints, Electric Machines and Power Systems,28(12), 2000, 1165–1176. doi:10.1080/073135600449044
  167. [167] P.K. Hota, R. Chakrabarti, & P.K. Chattopadhyay, A simulated annealing-based goal-attainment method for economicemission load dispatch with nonsmooth fuel cost and emission level functions, Electric Machines and Power Systems,28(11), 2000, 1037–1051. doi:10.1080/073135600449099
  168. [168] H.K. Youssef & K.M. El-Naggar, Genetic based algorithmfor security constrained power system economic dispatch,Electric Power System Research, 53(1), 2000, 47–51. doi:10.1016/S0378-7796(99)00039-5
  169. [169] T. Jayabarathi, G. Sadasivam, & V. Ramachandran, Evolutionary programming based economic dispatch of generators with prohibited operating zones, Electric Power SystemResearch, 52(3), 1999, 261–266. doi:10.1016/S0378-7796(99)00025-5
  170. [170] Y.H. Song, C.S.V. Chou, I.K. Yu, & G.S. Wang, Ant colonysearch, advanced engineering-conditioning genetic algorithmsand fuzzy logic controlled economic dispatch problems, inY.H. Song (Ed.), Modern optimization techniques in powersystems (Dordrecht, The Netherlands: Kluwer, 1999).
  171. [171] K.P. Wong & J. Yuryevich, Evolutionary-programming-basedalgorithm for environmentally-constrained economic dispatch,IEEE Trans. on Power Systems, 13(2), 1998, 301–306. doi:10.1109/59.667339
  172. [172] Y.H. Song & C.S. Chou, Advanced engineered conditioninggenetic approach to power economic dispatch, IEE Proc.Generation, Transmission & Distribution, 144(3), 1997, 285–292. doi:10.1049/ip-gtd:19970944
  173. [173] F. Li, R. Morgan, & D. Williams, Hybrid genetic approachesto ramping rate constrained dynamic economic dispatch,Electric Power System Research, 43(2), 1997, 97–103. doi:10.1016/S0378-7796(97)01165-6
  174. [174] J.H. Park, S.O. Yang, H.S. Lee, & Y.M. Park, Economicload dispatch using evolutionary algorithms, Proc. Int. Conf.ISAP, Orlando, FL, February 1996, 441–445. doi:10.1109/ISAP.1996.501113
  175. [175] S.O. Orero & M.R. Irving, Economic dispatch of generatorswith prohibited operating zones: A genetic algorithm approach, IEE Proc. Generation, Transmission & Distribution,143(6), 1996, 529–534. doi:10.1049/ip-gtd:19960626
  176. [176] L.L. Lai, J.T. Ma, & K.P. Wong, Evolutionary programmingfor economic dispatch of units with non-smooth input outputcharacteristic functions, Proc. 12th Power Systems Computation Conf. (PSCC), Dresden, Germany, 1996, 492–498.
  177. [177] H.T. Yang, P.C. Yang, & C.L. Huang, Evolutionary programming based economic dispatch for units with non-smooth fuelcost functions, IEEE Trans. on Power Systems, 11(1), 1996,112–118. doi:10.1109/59.485992
  178. [178] Y.M. Park & J.R. Won, Improved multi-stage GA basedeconomic dispatch solution with piecewise quadratic costfunction, Trans. Korean IEE, 44(2), 1995, 166–172.
  179. [179] B.S. Gerald & K. Brittig, Refined genetic algorithm-economicdispatch example, IEEE Trans. on Power Systems, 10(1),1995, 117–124. doi:10.1109/59.373934
  180. [180] P.H. Chen & H.C. Chang, Large-scale economic dispatch bygenetic algorithm, IEEE Trans. on Power Systems, 10(4),1995, 1919–1926. doi:10.1109/59.476058
  181. [181] G.B. Sheble & K. Brittig, Refined genetic algorithm-economicdispatch example, IEEE Trans. on Power Systems, 10(1),1995, 117–124. doi:10.1109/59.373934
  182. [182] Y.H. Song, F. Li, R. Morgan, & D.T.Y. Cheng, Effectiveimplementation of GAs on power economic dispatch, Proc.Int. Power Engineering Conf., vol. 1, Nanyang TechnologicalUniversity Singapore, 1995, 268–274.
  183. [183] Y.H. Song, F. Li, R. Morgan, & D.T.Y. Cheng, Comparisonstudies of GAs in power system economic dispatch, PowerSystem Technology, 19(3), 1995, 28–33.
  184. [184] K.S. Swarup, M. Yoshimi, Y. Izui, & N. Nagai, GA approachto environmental constrained optimal economic dispatch,Proc. Int. Conf. ISAP, Montpellier, France, 1994, 707–714.
  185. [185] F. Li, Y.H. Song, & R. Morgan, GAs based optimisationapproach to power system economic dispatch, Proc. 29thUniversities Power Engineering Conf., University CollegeGalway, Galway, Ireland, 1994, 680–683.
  186. [186] K.P. Wong & Y.W. Wong, Genetic and genetic/simulated-annealing approaches to economic dispatch, IEE Proc. Gen-eration, Transmission & Distribution, 141(5), 1994, 507–513. doi:10.1049/ip-gtd:19941354
  187. [187] A. Bakirtzis, V. Petridis, & S. Kazarlis, Genetic algorithmsolution to the economic dispatch problem, IEE Proc. Generation, Transmission & Distribution, 141(4), 1994, 377–382.222 doi:10.1049/ip-gtd:19941211
  188. [188] B.H. Chowdhury & S. Rahman, A review of recent advancesin economic dispatch, IEEE Trans. on Power Systems, 5(4),1990, 1248–1259.Alarm Processing and Fault Diagnosis doi:10.1109/59.99376
  189. [189] K.M. EL-Naggar & H.K.M. Youssef, A genetic based algorithm for frequency-relaying applications, Electric PowerSystem Research, 55(3), 2000, 173–178. doi:10.1016/S0378-7796(00)00080-8
  190. [190] C.W. So & K.K. Li, Overcurrent relay coordination byevolutionary programming, Electric Power System Research,53(2), 2000, 83–90. doi:10.1016/S0378-7796(99)00052-8
  191. [191] J.T. Alander, T. Mantere, G. Moghadampour, & J. Matila,Searching protection relay response time extremes using genetic algorithm: Software quality by optimization, ElectricPower System Research, 46(3), 1998, 229–233. doi:10.1016/S0378-7796(98)00013-3
  192. [192] W. Wen, C.S. Chang, & W. Fu, New approach to alarmprocessing in power system based on the self governing theoryand a refined genetic algorithm, Electric Machines and PowerSystems, 26(1), 1998, 53–58. doi:10.1080/07313569808955807
  193. [193] L.L. Lai, A.G. Sichanie, & B.J. Gwyn, comparison betweenevolutionary programming and a genetic algorithm for fault-section estimation, IEE Proc. Generation, Transmission &Distribution, 145(5), 1998, 616–620. doi:10.1049/ip-gtd:19982192
  194. [194] Y.C. Huang, H.T. Yang, & C.L. Huang, Developing a newtransformer fault diagnosis system through evolutionary fuzzylogic, IEEE Trans. on Power Delivery, 12(2), 1997, 761–767. doi:10.1109/61.584363
  195. [195] R. Aggarwal & A. Johns, AI for protection systems, in K.Wardwick, A. Ekwue, & R. Aggarwal (Eds.), Artificial intelligence techniques in power systems, IEE Power EngineeringSeries, vol. 22, London, 1997.
  196. [196] W. Fushuan & C.S. Chang, A probabilistic approach to alarmprocessing in power systems using a refined genetic algorithm,Proc. Int. Conf. ISAP, Orlando, FL, February 1996, 14–19. doi:10.1109/ISAP.1996.501038
  197. [197] F. Wen & Z. Han, An evolutionary optimization methodto fault section estimation using information for protectiverelays and circuit breakers, Proc. Int. Conf. Power SystemTechnology, Beijing, China, 1994, 1051–1055.
  198. [198] L.L. Lai, F.N. Che, K.H. Chu, P.R. Roop, & X.F. Wang,Design of neural networks with genetic algorithms for faultssection estimation, Proc. 29th Universities Power EngineeringConf., vol. 2, Galway, Ireland, 1994, 596–599.Power System Stabilizers
  199. [199] Y.L. Abdel-Magid & M.A. Abido, Optimal multiobjectivedesign of robust power system stabilizers using genetic algorithms, IEEE Trans. on Power Systems, 18(3), 2003, 1125–1132. doi:10.1109/TPWRS.2003.814848
  200. [200] K. Hongesombut, Y. Mitani, & K. Tsuji, Power systemstabilizer tuning in multimachine power system based on aminimum phase control method and genetic algorithm, Proc.14th Power Systems Computation Conf. (PSCC), Session 14,Paper 1, Seville, Spain, June 2002, 1–7.
  201. [201] D. Menniti, A. Burgio, A. Pinnarelli, V. Principe, N. Scordino,& N. Sorrentino, Damping oscillations improvement by fuzzypower system stabilizers tuned by genetic algorithm, Proc.14th Power Systems Computation Conf. (PSCC), Session 14,Paper 2, Seville, Spain, June 2002, 1–6.
  202. [202] M. Abido & Y. Abdel-Magid, Coordinated design of powersystem stabilizers and FACTS based stabilizers using geneticalgorithms, Proc. 14th Power Systems Computation Conf.(PSCC), Session 14, Paper 3, Seville, Spain, June 2002, 1–7.
  203. [203] A. Andreoiu & K. Bhattacharya, Genetic algorithm basedtuning of PID power system stabilizers, Proc. 14th PowerSystems Computation Conf. (PSCC), Session 14, Paper 5,Seville, Spain, June 2002, 1–6.
  204. [204] M.A. Abido, Parameter optimization of multimachine powersystem stabilizers using genetic local search, Electrical Powerand Energy Systems, 23(8), 2001, 785–794. doi:10.1016/S0142-0615(00)00096-X
  205. [205] J. Lu, M.H. Nehrir, & D.A. Pierre, A fuzzy logic-basedself tuning power system stabilizer optimized with a geneticalgorithm, Electric Power System Research, 60(2), 2001,77–83. doi:10.1016/S0378-7796(01)00170-5
  206. [206] M.A. Abido, Simulated annealing based approach to PSS andFACTS based stabilizer tuning, Electrical Power and EnergySystems, 22(4), 2000, 247–258. doi:10.1016/S0142-0615(99)00055-1
  207. [207] P. Lakshmi & M.A. Khan, Stability enhancement of a multimachine power system using fuzzy logic based power system stabilizer tuned through genetic algorithm, InternationalJournal of Electrical Power and Energy Systems, 22(2), 2000,137–145. doi:10.1016/S0142-0615(99)00043-5
  208. [208] M.A. Abido, Robust design of multimachine power systemstabilizers using simulated annealing, IEEE Trans. on EnergyConversion, 15(3), 2000, 297–304. doi:10.1109/60.875496
  209. [209] Y.L. Abdel-Magid, M.A. Abido, S. Al-Baiyat, & A.H.Mantawy, Simultaneous stabilization of multimachine powersystems via genetic algorithms, IEEE Trans. on Power Systems, 14(4), 1999, 1428–1439. doi:10.1109/59.801907
  210. [210] M.A. Abido, Coordinated design of power system stabilizersand static phase shifters using genetic algorithm, ElectricMachines and Power Systems, 27(10), 1999, 1069–1084. doi:10.1080/073135699268722
  211. [211] M.A. Abido & Y.L. Abdel-Magid, A genetic based powersystem stabilizer, Electrical Machines and Power Systems,26(6), 1998, 559–572. doi:10.1080/07313569808955841
  212. [212] Y.L. Abdel-Magid & M.M. Dawoud, Tuning of power systemstabilizers using genetic algorithms, Electric Power SystemResearch, 39(2), 1996, 137–143.Power System Restoration doi:10.1016/S0378-7796(96)01105-4
  213. [213] M.R. Irving, W.P. Luan, & J.S. Daniel, Supply restoration indistribution networks using a genetic algorithm, InternationalJournal of Electrical Power and Energy Systems, 24(6), 2002,447–457. doi:10.1016/S0142-0615(01)00057-6
  214. [214] W.P. Luan, M.R. Irving, & J.S. Daniel, Genetic algorithm forsupply restoration and optimal load shedding in power systemdistribution networks, IEE Proc. Generation, Transmission &Distribution, 149(2), 2002, 145–151. doi:10.1049/ip-gtd:20020095
  215. [215] M.K. Khedkar & V.A. Mujgelwar, Restoration of distributionnetwork using genetic algorithm, Proc. Application of Evolutionary Strategies to Power, Signal Processing and Control,Regional Engineering College Rourkela, India, February 2002,77–81.
  216. [216] Y.T. Hsiao & C.Y. Chien, Enhancement of restoration servicein distribution systems using a combination fuzzy-GA method,IEEE Trans. on Power Systems, 15(4), 2000, 1394–1400. doi:10.1109/59.898118
  217. [217] A. Augugliaro, L. Dusonchet, & E.R. Sanseverino, Multiobjective service restoration in distribution networks using anevolutionary approach and fuzzy sets, Electrical Power andEnergy Systems, 22(2), 2000, 103–110. doi:10.1016/S0142-0615(99)00040-X
  218. [218] A. Augugliaro, L. Dusonchet, & E.R. Sanseverino, Servicerestoration in compensated distribution networks using ahybrid genetic algorithm, Electric Power System Research,46(1), 1998, 59–66. doi:10.1016/S0378-7796(98)00025-X
  219. [219] Y. Fukuyama, H.D. Chiang, & K.N. Miu, Parallel geneticalgorithm for service restoration in electric power distributionsystems, International Journal of Electrical Power and EnergySystems, 18(2), 1996, 111–119. doi:10.1016/0142-0615(95)00016-X
  220. [220] Y. Fukuyama, H. Endo, & Y. Nakanishi, A hybrid system forservice restoration using expert system and genetic algorithm,Proc. Int. Conf. ISAP, Orlando, FL, February 1996, 394–398. doi:10.1109/ISAP.1996.501105
  221. [221] T. Oyama, Restorative planning of power system using geneticalgorithm with branch exchange method, Proc. Int. Conf.ISAP, Orlando, FL, February 1996, 175–179. doi:10.1109/ISAP.1996.501064
  222. [222] S. Curcic, C.S. Ozveren, L. Crowe, & P.K.L. Lo, Electricpower distribution network restoration: A survey of papersand a review of the restoration problem, Electric PowerSystem Research, 35(2), 1995, 73–86. doi:10.1016/0378-7796(95)00991-4
  223. [223] Y. Fukuyama & Y. Ueki, Application of GAs to servicerestoration in distribution systems, Electrical Engineering inJapan, 115(3), 1995, 30–38. doi:10.1002/eej.4391150303
  224. [224] Y. Fukuyama & H.D. Chiang, A parallel GA for servicerestoration in electric power distribution systems, Proc. 4thIEEE Int. Conf. on Fuzzy Systems, New York, 1995, 275–282.Optimal Power Flow
  225. [225] S.R. Paranjothi & K. Anburaja, Optimal power flow usingrefined genetic algorithm, Electric Power Components andSystems, 30(10), 2002, 1055–1063. doi:10.1080/15325000290085343
  226. [226] J. Yuryevich & K.P. Wong, Evolutionary programming basedoptimal power flow algorithm, IEEE Trans. on Power Sys-tems, 14(4), 1999, 1245–1250.223 doi:10.1109/59.801880
  227. [227] T. Numnonda & U.D. Annakkage, Optimal power dispatch inmultinode electricity market using genetic algorithm, ElectricPower System Research, 49(3), 1999, 211–220. doi:10.1016/S0378-7796(98)00139-4
  228. [228] L.L. Lai, J.T. Ma, R. Yokoyama, & M. Zhao, Improvedgenetic algorithms for optimal power flow under both normaland contingent operation states, International Journal ofElectrical Power and Energy Systems, 19(5), 1997, 287–292. doi:10.1016/S0142-0615(96)00051-8
  229. [229] L.L. Lai & J.T. Ma, Optimal power flow in FACTS usinggenetic algorithms, IEEE/KTH, Stockholm Power Tech Int.Symp. on Electric Power Engineering, Stockholm, 1995, 484–489.Power System Control
  230. [230] S.P. Ghoshal & S.K. Goswami, Application of GA basedoptimal integral gains in fuzzy based active power-frequencycontrol of non-reheat and reheat thermal generating systems,Electric Power System Research, 67(2), 2003, 79–88. doi:10.1016/S0378-7796(03)00087-7
  231. [231] S.K. Aditya, Design of load frequency controllers using geneticalgorithm for two area interconnected hydro power system,Electric Power Components and Systems, 31(1), 2003, 81–94. doi:10.1080/15325000390112071
  232. [232] D. Rerkpreedapong, A. Hasanovic, & A. Feliachi, Robustload frequency control using genetic algorithms and linearmatrix inequalities, IEEE Trans. on Power Systems, 18(2),2003, 855–861. doi:10.1109/TPWRS.2003.811005
  233. [233] S. Latha, S.M.R. Slochanal, & K. Balamuran, Optimum sizeand location of unified power flow controllers using evolu-tionary programming, Journal of the Institution of Engineers(India), 83(EL-4), 2002, 242–245.
  234. [234] Y.P. Wang, N.R. Watson, & H.H. Chong, Modified geneticalgorithm approach to design of an optimal PID controllerfor AC-DC transmission systems, International Journal ofElectrical Power and Energy Systems, 26(1), 2002, 59–69. doi:10.1016/S0142-0615(01)00006-0
  235. [235] A.L.B. Bomfim, G.N. Taranto, & D.M. Falcao, Simultaneoustuning of power system damping controllers using geneticalgorithms, IEEE Trans. on Power Systems, 15(1), 2000,163–169. doi:10.1109/59.852116
  236. [236] S.M. Badran & H.N. Al-Duwaish, Optimal output feedbackcontroller based on genetic algorithms, Electric Power SystemResearch, 50(1), 1999, 7–15. doi:10.1016/S0378-7796(98)00061-3
  237. [237] X.R. Chen, N.C. Pahalawaththa, U.D. Annakkage, & C.S.Kumble, Design of decentralized output feedback TCSCdamping controllers by using simulated annealing, IEE Proc.Generation, Transmission & Distribution, 145(5), 1998, 553–558. doi:10.1049/ip-gtd:19982184
  238. [238] J. Wen, S. Cheng, & O.P. Malik, A synchronous generatorfuzzy excitation controller optimally designed with a geneticalgorithm, IEEE Trans. on Power Systems, 13(3), 1998,884–889. doi:10.1109/59.708763
  239. [239] M. Reformat, E. Kuffel, D. Woodford, & W. Pedrycz, Application of genetic algorithms for control design in powersystems, IEE Proc.Generation, Transmission & Distribution,145(4), 1998, 345–354. doi:10.1049/ip-gtd:19982003
  240. [240] G.N. Taranto & D.M. Falcao, Robust decentralized controldesign using genetic algorithms in power system dampingcontrol, IEE Proc. Generation, Transmission & Distribution,145(1), 1998, 1–6. doi:10.1049/ip-gtd:19981689
  241. [241] C.S. Chang, W. Fu, & F. Wen, Load frequency control usinggenetic algorithm based fuzzy gain stabilizing PI controller,Electric Machines and Power Systems, 26(1), 1998, 39–52. doi:10.1080/07313569808955806
  242. [242] P. Ju, E. Hands Chin, & F. Reyer, Genetic algorithm aidedcontroller design with application to SVC, Proc. IEE-Pt. B,143(3), 1996, 258–262. doi:10.1049/ip-gtd:19960330
  243. [243] L.L. Lai & J.T. Ma, Power flow control with UPFC usinggenetic algorithms, Proc. Int. Conf. ISAP, Orlando, FL,February 1996, 373–377. doi:10.1109/ISAP.1996.501101
  244. [244] X.R. Chen, N.C. Pahalawaththa, U.D. Annakkage, & C.S.Kumble, Simulated annealing for the design of power systemdamping controllers, Electric Power System Research, 39(1),1996, 67–72.Reconfiguration doi:10.1016/S0378-7796(96)01110-8
  245. [245] B. Venkatesh & R. Ranjan, Optimal radial distribution system reconfiguration using fuzzy adaptation of evolutionaryprogramming, International Journal of Electrical Power andEnergy Systems, 25(10), 2003 775–780. doi:10.1016/S0142-0615(03)00046-2
  246. [246] Y.C. Huang, Enhanced genetic algorithm-based fuzzy multi-objective approach to distribution network reconfiguration,Proc. IEE-Pt. B, 149(5), 2002, 615–620. doi:10.1049/ip-gtd:20020512
  247. [247] W.M. Lin, F.S. Cheng, & M.T. Tsay, Distribution feederreconfiguration with refined genetic algorithm, IEE Proc.Generation, Transmission & Distribution, 147(6), 2000, 349–354. doi:10.1049/ip-gtd:20000715
  248. [248] Y.H. Song, G.S. Wang, A.T. Johns, & P.Y. Wang, Distribution network reconfiguration for loss reduction using fuzzycontrolled evolutionary programming, IEE Proc. Generation,Transmission & Distribution, 144(4), 1997, 345–350. doi:10.1049/ip-gtd:19971101
  249. [249] D. Choi & J. Hasegawa, An application of GAs to the distribution system loss minimization re-configuration problem,Proc. Int. Power Engineering Conf., Nanyang TechnologicalUniversity, Singapore, 1995, 436–441.
  250. [250] D. Choi & J. Hasegawa, The application of a GA witha chromosome limited life for the distribution system lossminimization re-configuration problem, Trans. IEE of Japan,115-B(7), 1995, 741–748.
  251. [251] C.C. Kuo & H.C. Chang, Applying a refined GA to networkreconfiguration for loss reduction, Proc. 5th Annual Conf. ofPower and Energy Society IEE Japan, Tokyo, 1994, 37–42.
  252. [252] D. Choi & J. Hasegawa, Improvement of GA convergencecharacteristics for distribution system loss minimization reconfiguration, Proc. 5th Annual Conf. of Power and EnergySociety IEE Japan, Tokyo, 1994, 19–24.Other Areas of Power System
  253. [253] K.P. Wong, J. Yuryevich, & A. Li, Evolutionary-programming-based load flow algorithm for systems containing unified power flow controllers, IEE Proc. Generation, Transmission & Distribution, 150(4), 2003, 441–446. doi:10.1049/ip-gtd:20030405
  254. [254] J.Y. Wen, Q.H. Wu, K.I. Nuttall, D.W. Shimmin, & S. J.Cheng, Construction of power system load models and network equivalence using an evolutionary computation technique, Electrical Power and Energy Systems, 25(4), 2003,293–299. doi:10.1016/S0142-0615(02)00080-7
  255. [255] Q.H. Wu, J.Y. Wen, K.I. Nuttall, D.W. Shimmin, & S.J. Chen,Power system load modeling by evolutionary computationbased on system measurements, Electric Power Componentsand Systems, 31(5), 2003, 423–439. doi:10.1080/15325000390112288
  256. [256] B. Milosevic & M. Begovic, Nondominated sorting geneticalgorithm for optimal phasor measurement placement, IEEETrans. on Power Systems, 18(1), 2003, 69–75. doi:10.1109/TPWRS.2002.807064
  257. [257] N. Samaan & C. Singh, Adequacy assessment of power systemgeneration using a modified simple genetic algorithm, IEEETrans. on Power Systems, 17(4), 2002, 974–981. doi:10.1109/TPWRS.2002.804994
  258. [258] S. Mishra, P.K. Dash, P.K. Hota, & M. Tripathy, Geneticallyoptimized neuro-fuzzy IPFC for damping modal oscillationsof power system, IEEE Trans. on Power Systems, 17(4),2002, 1140–1147. doi:10.1109/TPWRS.2002.804958
  259. [259] S.L. Surana & R.P. Maheshwari, Cost minimization for radialdistribution feeder using genetic algorithm, Journal of theInstitution of Engineers (India), 82(EL-1), 2002, 297–303.
  260. [260] A.F. Otero, J. Cidras, & C. Garrido, Grounding grid design using evolutionary computation-based methods, ElectricPower Components and Systems, 30(2), 2002, 151–165. doi:10.1080/153250002753427833
  261. [261] L. Shi & G. Xu, Self-adaptive evolutionary programmingand its application to multi-objective optimal operation ofpower systems, Electric Power System Research, 57(3), 2001,181–187. doi:10.1016/S0378-7796(01)00086-4
  262. [262] R.H. Liang & Y.S. Wang, Main transformer ULTC and capacitors scheduling by simulated annealing approach, ElectricalPower and Energy Systems, 23(7), 2001, 531–538. doi:10.1016/S0142-0615(00)00086-7
  263. [263] V. Galdi, L. Ippolito, A. Piccolo, & A. Vaccaro, Parameteridentification of power transformers thermal model via geneticalgorithms, Electric Power System Research, 60(2), 2001,107–113. doi:10.1016/S0378-7796(01)00173-0
  264. [264] S. Gerbex, R. Cherkaoui, & A.J. Germond, Optimal locationof multi-type FACTS devices in a power system by means ofgenetic algorithms, IEEE Trans. on Power Systems, 16(3),2001, 537–544. doi:10.1109/59.932292
  265. [265] A. Borghetti, R. Caldon, & C.A. Nucci, Generic dynamic loadmodels in long-term voltage stability studies, International224Journal of Electrical Power and Energy Systems, 22(4), 2000,291–301. doi:10.1016/S0142-0615(99)00063-0
  266. [266] M. Zaki, M. Abdel-Salam, & A. Abdel-Hakim, The useof genetic algorithms for assessment of high voltage fields,Computer and Electrical Engineering, 26(6), 2000, 423–443. doi:10.1016/S0045-7906(99)00049-X
  267. [267] C.W. Richter, Jr., G.B. Sheble, & Ashlock, Comprehensive bidding strategies with genetic programming/finite stateautomation, IEEE Trans. on Power Systems, 14(4), 1999,1207–1212. doi:10.1109/59.801874
  268. [268] J. Zhu, G. Bilbro, & M.Y. Chow, Phase balancing usingsimulated annealing, IEEE Trans. on Power Systems, 14(4),1999, 1508–1513. doi:10.1109/59.801943
  269. [269] K.P. Wong, A. Li, & T.M.Y. Law, Advanced, constrained,genetic algorithm load flow method, IEE Proc. Generation,Transmission & Distribution, 146(6), 1999, 609–616. doi:10.1049/ip-gtd:19990638
  270. [270] P. Paterni, S. Vitet, M. Bena, & A. Yokoyama, Optimallocation of phase shifters in the French network by geneticalgorithm, IEEE Trans. on Power Systems, 14(1), 1999,37–42. doi:10.1109/59.744481
  271. [271] C.S. Chang, J.S. Low, & D. Srinivasan, Application of geneticalgorithms to determine worst-case switching over voltageof MRT systems, IEE Proc. Electric Power Applications,146(1), 1999, 81–87. doi:10.1049/ip-epa:19990191
  272. [272] L.L. Lai & J.T. Ma, Multitime-interval scheduling for dailyoperation of a two-cogeneration system with evolutionaryprogramming, Electrical Power and Energy Systems, 20(5),1998, 305–311. doi:10.1016/S0142-0615(98)00009-X
  273. [273] C.W. Richter, Jr., & G.B. Sheble, Genetic algorithm evolutionof utility bidding strategies for the competitive marketplace,IEEE Trans. Power Systems, 13(1), 1998, 256–261. doi:10.1109/59.651644
  274. [274] J.W. Nims, A.A. El-Keib, & R.E. Smith, Contingency rankingfor voltage stability using a genetic algorithm, Electric PowerSystem Research, 43(1), 1997, 69–76. doi:10.1016/S0378-7796(97)01162-0
  275. [275] K.P. Wong, A. Li, & M.Y. Law, development of constrained-genetic-algorithm load-flow method, Proc. IEE-Pt. B, 144(2),1997, 87–90. doi:10.1049/ip-gtd:19970847
  276. [276] D. Srinivasan & A.G.B. Tettamanzi, An evolutionary algorithm for evaluation of emission compliance options in viewof the Clean Air Act amendments, IEEE Trans. on PowerSystems, 12(1), 1997, 336–341. doi:10.1109/59.574956
  277. [277] Y.L. Abdel-Magid, M. Bettayeb, & M.M. Dawoud, Simultaneous stabilization of power systems using genetic algorithms,IEE Proc. Generation, Transmission & Distribution, 144(1),1997, 39–44. doi:10.1049/ip-gtd:19970785
  278. [278] C.S. Chang, Q.Z. Yu, A.C. Liew, & S. Elangovan, Geneticalgorithm tuning of fuzzy SVC for damping power systeminter-area oscillations, Proc. 4th IEE Int. Conf. on Advancesin Power System Control, Operation and Management (AP-SCOM), vol. 2, November 1997, 509–514. doi:10.1049/cp:19971886
  279. [279] R.E. Brown, S. Gupta, R.D. Christie, & S.S. Venkata, Agenetic algorithm for reliable distribution system design, Proc.Int. Conf. ISAP, Orlando, FL, February 1996, 29–33. doi:10.1109/ISAP.1996.501040
  280. [280] M.A. El-Sharkawi & S.J. Huang, Development of geneticalgorithm embedded Kohonen neural network for dynamicsecurity assessment, Proc. Int. Conf. ISAP, Orlando, FL,February 1996, 44–49. doi:10.1109/ISAP.1996.501042
  281. [281] M. Sakata & S. Iwamoto, Genetic algorithm based real-timerating for short-time thermal capacity of duct installed powercables, Proc. Int. Conf. ISAP, Orlando, FL, February 1996,85–90. doi:10.1109/ISAP.1996.501049
  282. [282] J.X. Xu, C.S. Chang, & X.W. Wang, Constrained multi-objective global optimization of longitudinal interconnectedpower system by genetic algorithm, IEE Proc. Generation,Transmission & Distribution, 143(5), 1996, 435–446. doi:10.1049/ip-gtd:19960418
  283. [283] L.L. Lai & J.T. Ma, Application of evolutionary programmingto transient and sub-transient parameter estimation, IEEETrans. on Energy Conversion, 11, 1996, 523–530. doi:10.1109/60.537003
  284. [284] H. Rudnick, R. Palma, E. Cura, & C. Silva, Economicallyadapted transmission system in open access schemes: Application of genetic algorithm, IEEE Trans. on Power Systems,11(3), 1996, 1427–1440. doi:10.1109/59.535684
  285. [285] I.J. Remirez-Rosado & J.L. Bernal-Agustin, Optimization ofpower distribution network by genetic algorithm, International Journal of Power and Energy Systems, 15(3), 1995,104–110.
  286. [286] J.T. Ma & Q.H. Wu, Generator parameter identificationusing evolutionary programming, Electrical Power and EnergySystems, 17(6), 1995, 417–423. doi:10.1016/0142-0615(94)00015-8
  287. [287] I.O. Habiballah & M.R. Irving, Multi-partitioning of powersystem state estimation networks using simulated annealing,Electric Power System Research, 34(2), 1995, 117–120. doi:10.1016/0378-7796(95)00964-3
  288. [288] G. Levitin, S.M. Tov, & D. Elmakis, Genetic algorithm foroptimal sectionalizing in radial distribution systems withalternative supply, Electric Power System Research, 35(3),1995, 149–155. doi:10.1016/0378-7796(95)01002-5
  289. [289] G. Levitin, S.M. Tov, & D. Elmakis, Genetic algorithm foropen-loop distribution system design, Electric Power SystemResearch, 32(2), 1995, 81–87. doi:10.1016/0378-7796(94)00909-N
  290. [290] J.E. Lansberry & L. Wozniak, Adaptive hydro generatorgovernor tuning with a genetic algorithm, IEEE Trans. onEnergy Conversion, 9(1), 1994, 179–185. doi:10.1109/60.282490

Important Links:

Go Back