R.C. Bansal
[1] A.S. Fraser, Simulation of genetic systems by automaticdigital computers, Australian Journal of Biological Sciences,10, 1957, 484–491. [2] G.D. Friedman, Digital simulation of an evolutionary process,General Systems Yearbook, 4, 1959. [3] W.W. Blendsoe, The use of biological concepts in the analytical study of systems, paper presented at the ORSA-TIMSNational Meeting, San Francisco, November 1961. [4] H.J. Bremermann, Optimization through evolution and recombination, in M.C. Yovits, G.T. Jacobi, & G.D. Goldstein(Eds.), Self-organization systems (Washington, DC: SpartanBooks, 1962). [5] L.J. Fogel, A.J. Owens, & M.J. Walsh, Artificial intelligencethrough simulated evolution (New York: John Wiley, 1966). [6] J.H. Holland, Adaption in natural and artificial systems (AnnArbor, MI: University of Michigan Press, 1975). [7] D.E. Goldberg, Genetic algorithms in search, optimizationand machine learning (New York: Addison-Wesley, 1989). [8] R.C. Bansal, T.S. Bhatti, & D.P. Kothari, Artificial intelligence techniques for monitoring and control of power systems: An overview, Proc. Int. Conf. Control, Instrumentation, and Information Communication, Calcutta, December2001, 91–95. [9] R.C. Bansal, Literature survey on expert system applications to power systems (1990–2001), International Journal ofEngineering Intelligent Systems, 11(3), 2003, 103–112. [10] W.R.A. Ibrahim & M.M. Morcos, Artificial intelligence andadvanced mathematical tools for power quality applications:A survey, IEEE Trans. Power Delivery, 17(2), 2002, 668–673. doi:10.1109/61.997958 [11] Y.H. Song & M.R. Irving, Optimization methods for electricpower systems, II: Heuristic optimization methods, IEE PowerEngineering Journal, 15(3), 2001, 151–160. doi:10.1049/pe:20010307 [12] M.R. Irving & Y.H. Song, Optimization techniques for electricpower systems, I: Mathematical optimization methods, IEEPower Engineering Journal, 14(5), 2000, 245–254. doi:10.1049/pe:20000509 [13] Y.H. Song (Ed.), Modern optimization techniques in powersystems (Dordrecht, The Netherlands: Kluwer, 1999). [14] L.L. Lai, Intelligent system applications in power engineering(New York: John Wiley and Sons, 1998). [15] V. Miranda, D. Srinivasan, & LM. Proenca, Evolutionarycomputation in power systems, Electrical Power and EnergySystems, 20(2), 1998, 89–98. doi:10.1016/S0142-0615(97)00040-9 [16] M.A. Laughton, Artificial intelligence techniques in powersystems, in K. Wardwick, A. Ekwue, & R. Aggarwal (Eds.),Artificial intelligence techniques in power systems, IEE PowerEngineering Series, 22, London, 1997. [17] K. Wardwick, A. Ekwue, & R. Aggarwal, Artificial intelligencetechniques in power systems, IEE Power Engineering Series,22, London, 1997. [18] T. Black, U. Hammel, & H.P. Schwefel, Evolutionary computation: Comments on the history and current state, IEEETrans. Evolutionary Computation, 1(1), 1997, 3–17. doi:10.1109/4235.585888 [19] Dhabbagchi, R.D. Christie, G.W. Rosanwald, & C.C. Liu,AI applications in power systems, Expert Intelligent Systemsand Their Applications, 12(1), 1997, 58–66. [20] D. Srinivasan, W. Fushuan, C.S. Chang, & A.C. Liew, Asurvey of applications of evolutionary computing to powersystems, Proc. Int. Conf. Intelligent Systems Applications toPower Systems (ISAP), Orlando, FL, February 1996, 35–41. doi:10.1109/ISAP.1996.501041 [21] V. Mirinda, D. Srinivasan, & L.M. Proenca, Evolutionarycomputation in power systems, Proc. 12th PSCC, Dresden,Germany, August 1996, 19–23. [22] J.T. Alander, An indexed bibliography of genetic algorithm inpower engineering, Report Series 94-1: Power, February 21,1996, ftp://ftp.uwasa.fi/cs/report94-1/gaPOWERbib.ps.Z. [23] S. Rahman, Artificial intelligence in electric power systems:A survey of the Japanese industry, IEEE Trans. on PowerSystems, 8(3), 1993, 1211–1218.Power System Planning doi:10.1109/59.260875 [24] E. Diaz-Dorado, J. Cidras, & E. Miguez, Application ofevolutionary algorithms for the planning of urban distributionnetworks of medium voltage, IEEE Trans. on Power Systems,17(3), 2002, 879–884. doi:10.1109/TPWRS.2002.800975 [25] H.K.M. Youssef, Dynamic transmission planning using aconstrained genetic algorithm, Electrical Power and EnergySystems, 23(8), 2001, 857–862. doi:10.1016/S0142-0615(01)00003-5 [26] H.A. Gil & E.L. da Silva, A reliable approach for solvingthe transmission network expansion planning problem usinggenetic algorithms, Electric Power System Research, 58(1),2001, 45–51. doi:10.1016/S0378-7796(01)00102-X [27] W.M. Lin, C.D. Yang, & M.T. Tsay, Distribution systemplanning with evolutionary programming and a reliability cost218model, IEE Proc. Generation, Transmission & Distribution,147(6), 2000, 336–341. doi:10.1049/ip-gtd:20000714 [28] J.B. Park, Y.M. Park, & K.Y. Lee, An improved geneticalgorithm for transmission network expansion planning, IEEETrans. on Power Systems, 15(3), 2000, 916–922. doi:10.1109/59.871713 [29] E.L. da Silva, H.A. Gill, & J.M. Areiza, Transmission networkexpansion planning under an improved genetic algorithm,IEEE Trans. on Power Systems, 15(3), 2000, 1168–1175. doi:10.1109/59.871750 [30] P.M.S. Carvalho, L.A.F.M. Ferreira, F.G. Lobo, & L.M.F.Barruncho, Distribution network expansion planning underuncertainty: A hedging algorithm in an evolutionary approach, IEEE Trans. on Power Delivery, 15(1), 2000, 412–416. doi:10.1109/61.847282 [31] M.R. Irving, H.M. Chebbo, & S.O. Orero, Transmissionnetwork planning using generic algorithms, in Y.H. Song(Ed.), Modern optimization techniques in power systems(Dordrecht, The Netherlands: Kluwer, 1999). [32] Y.M. Park, J.B. Park, & J.R. Won, A hybrid genetic algorithm/dynamic programming to optimal long term generation planning, International Journal of Electrical Power andEnergy Systems, 20(4), 1998, 295–303. doi:10.1016/S0142-0615(97)00070-7 [33] Y. Hayashi & K. Nara, Scenario selection by genetic algorithmby power resource planning, International Journal of Powerand Energy Systems, 18(2), 1998, 142–146. [34] R.A. Gallego, A. Monticelli, & R. Romero, Transmissionsystem expansion planning by an extended genetic algorithm,IEE Proc. Generation, Transmission & Distribution, 145(3),1998, 329–335. doi:10.1049/ip-gtd:19981895 [35] P.M.S. Carvalho, L.A.F.M. Ferreira, F.G. Lobo, & L.M.F.Barruncho, Optimal distribution network expansion planningunder uncertainty by evolutionary decision convergence, International Journal of Electrical Power and Energy Systems,20(2), 1998, 125–129. doi:10.1016/S0142-0615(97)00037-9 [36] H.M. Chebbo & M.R. Irving, Applications of genetic algorithm to transmission planning, Proc. IEE Genetic Algorithm in Engineering Systems: Innovations and Applications,University of Strathclyde, UK, 1997, 388–393. [37] R.A. Gallego, A.B. Alves, A. Monticelli, & R. Romero,Parallel simulated annealing applied to long term transmissionnetwork expansion planning, IEEE Trans. on Power Systems,12(1), 1997, 181–188. doi:10.1109/59.574938 [38] L.L. Lai, J.T. Ma, K.P. Wong, M. Zhao, & H. Sasaki,Application of evolutionary programming to transmissionsystem planning, Proc. IEE Japan Power and Energy, Osaka,Japan, 1996, 147–152. [39] E.C. Yeh, S.S. Venkata, & Z. Sumic, Improved distributionsystem planning using computational evolution, IEEE Trans.on Power Systems, 11(2), 1996, 668–674. doi:10.1109/59.496137 [40] Y. Fukuyama & H.D. Chiang, A parallel genetic algorithmfor generation expansion planning, IEEE Trans. on PowerSystems, 11(2), 1996, 955–961. doi:10.1109/59.496180 [41] R. Romero, R.A. Gallego, & A. Monticelli, Transmissionsystem expansion planning by simulated annealing, IEEETrans. on Power Systems, 11(1), 1996, 364–369. doi:10.1109/59.486119 [42] V. Miranda, J.V. Ranito, & L.M. Proenca, Genetic algorithmsin optimal multistage distribution network planning, IEEETrans. on Power Systems, 9(4), 1994, 1927–1933. doi:10.1109/59.331452 [43] G. Latorre-Bayona & I.J. Periz-Arriaga, Chopin: A heuristicmodel for long term transmission expansion planning, IEEETrans. on Power Systems, 9(4), 1994, 1886–1894. doi:10.1109/59.331446 [44] K. Yoshimoto, K. Yasuda, R. Yokoyama, H. Tanaka, &Y. Akimoto, An approach for transmission expansion planningusing neuro-computing hybridized with GA, Trans. IEE ofJapan, 114-B(10), 1994, 1029–1037. [45] Y. Fukuyama & Y. Ueki, An application of parallel gasto generation expansion planning using parallel processors,Trans. of IEE Japan, 114-B(12), 1994, 1250–1256. [46] Y. Fukuyama & H.D. Chiang, A parallel GA for generationexpansion planning, Proc. Int. Conf. ISAP, Montpellier,France, 1994, 161–167. [47] V. Miranda & L.M. Proenca, GAs and fuzzy models: Anapplication to gas and electricity distribution planning underuncertainty, Proc. 3rd Int. Workshop on Rough Sets and SoftComputing (RSSC), San Jose, CA, 1994, 43–50.Reactive Power/Voltage Control [48] R.C. Bansal, T.S. Bhatti, & D.P. Kothari, Artificial intelligence techniques for reactive power/voltage control in powersystems: A review, International Journal of Power andEnergy Systems, 23(2), 2003, 81–89. [49] P.C. Panda, B.S. Chandrasekhar, P.L. Bisi, S. Prasad,G. Srivastava, & S.X. Palathingal, Application of micro genetic algorithm for optimal capacitor placement in distribution system, Proc. Application of Evolutionary Strategies toPower, Signal Processing and Control, Regional EngineeringCollege of Rourkela, India, February 2002, 91–97. [50] Y. Liu, L. Ma, & J. Zhang, Reactive power optimizationby GA/SA/TS combined algorithms, Electrical Power andEnergy Systems, 24(9), 2002, 765–769. doi:10.1016/S0142-0615(01)00087-4 [51] D. Das, Reactive power compensation for radial distributionnetworks using genetic algorithm, International Journal ofElectrical Power and Energy Systems, 24(7), 2002, 573–581. doi:10.1016/S0142-0615(01)00068-0 [52] S. Baskar, P. Subbaraj, M.V.C. Rao, & S.T. Jayachrista,Optimal capacitor placement in distribution systems usingsequential decomposed genetic algorithm, Journal of theInstitution of Engineers (India), 82(EL-2), 2001, 36–42. [53] J.R.S. Mantovani, S.A.G. Modesto, & A.V. Garcia, Varplanning using genetic algorithm and linear programming,Proc. IEE-Pt. B, 148(3), 2001, 257–262. doi:10.1049/ip-gtd:20010214 [54] A.M. Delfanti, G.P. Granelli, P. Marannino, & M. Montagna,Optimal capacitor placement using deterministic and geneticalgorithms, IEEE Trans. Energy Conversion, 15(3), 2000,1041–1046. [55] S.J. Huang, An immune-based optimization methods to capacitor placement in a radial distribution system, IEEETrans. on Power Delivery, 15(2), 2000, 744–749. doi:10.1109/61.853014 [56] G. Levitin, A. Kalyuzhny, A. Shenkman, & M. Chertkov,Optimal capacitor allocation in distribution systems usinga genetic algorithm and a fast energy loss computationtechnique, IEEE Trans. on Power Delivery, 15(2), 2000,623–628. doi:10.1109/61.852995 [57] Y.T. Hsiao & H.D. Chiang, Applying network window schemeand a simulated annealing technique to optimal VAR planning in large-scale power systems, International Journal ofElectrical Power and Energy Systems, 22(1), 2000, 1–8. doi:10.1016/S0142-0615(99)00028-9 [58] J.R. Gomes & O.R. Saavedra, Optimal reactive power dispatchusing evolutionary computation: New extended algorithms,IEE Proc. Generation, Transmission & Distribution, 146(6),1999, 586–592. doi:10.1049/ip-gtd:19990683 [59] A.J. Urdaneta, J.F. Gomez, E. Sorrentino, L. Flores, &R. Diaz, A hybrid genetic algorithm for optimal reactivepower planning based upon successive linear programming,IEEE Trans. on Power Systems, 14(4), 1999, 1292–1298. doi:10.1109/59.801887 [60] T. Ghose, S.K. Goswami, & S.K. Basu, Solving capacitorplacement problems in distribution systems using geneticalgorithms, Electric Machines and Power Systems, 27(4),1999, 429–441. doi:10.1080/073135699269244 [61] T.S. Chung & H.C. Leung, A genetic algorithm approachin optimal capacitor selection with harmonic distortion considerations, International Journal of Electrical Power andEnergy Systems, 21(8), 1999, 561–569. doi:10.1016/S0142-0615(99)00025-3 [62] S.K. Goswami, T. Ghose, & S.K. Basu, An approximatemethod for capacitor placement in distribution system usingheuristics and greedy search technique, Electric Power SystemResearch, 51(3), 1999, 143–151. doi:10.1016/S0378-7796(98)00166-7 [63] T. Ghose, S.K. Goswami, & S.K. Basu, Solution of capacitorplacement problem in distribution system using modifiedgenetic algorithm, Journal of the Institution of Engineers(India), 79(EL-1), 1999, 178–182. [64] L.L. Lai & J.T. Ma, practical application of evolutionarycomputing to reactive power planning, IEE Proc. Generation,Transmission & Distribution, 145(6), 1998, 753–758. doi:10.1049/ip-gtd:19982368 [65] Q.H. Wu, Y.J. Cao, & J.Y. Wen, Optimal reactive powerdispatch using an adaptive genetic algorithm, Electrical Powerand Energy Systems, 20(8), 1998, 563–569. doi:10.1016/S0142-0615(98)00016-7 [66] K.Y. Lee & F.F. Yang, Optimal reactive power planning usingevolutionary algorithms: A comparative study for evolutionary programming, evolutionary strategy, genetic algorithm,and linear programming, IEEE Trans. on Power Systems,13(1), 1998, 101–108.219 doi:10.1109/59.651620 [67] A. Ekwue, D.T.Y. Cheng, & J.F. Macqueen, Artificial intelligence techniques for voltage control, in K. Wardwick, A. Ekwue, & R. Aggarwal (Eds.), Artificial intelligence techniquesin power systems, IEE Power Engineering Series, 22, London,1997. [68] K.N. Miu, H.D. Chiang, & D. Darling, Capacitor placement,replacement and control in large-scale distribution systemsby a GA-based two-stage algorithm, IEEE Trans. on PowerSystems, 12(3), 1997, 1160–1166. doi:10.1109/59.630457 [69] L.L. Lai & J.T. Ma, Application of evolutionary programmingto reactive power planning: Comparison with nonlinear pro-gramming approach, IEEE Trans. on Power Systems, 12(1),1997, 198–204. doi:10.1109/59.574940 [70] J.T. Ma & L.L. Lai, Improved genetic algorithm for reactivepower planning, Proc. 12th Power Computational Conf.,Dresden, Germany, August 1996, 499–505. [71] K.Y. Lee, X. Bai, & Y.M. Park, Optimization method forreactive power planning by using a modified simple geneticalgorithm, IEEE Trans. on Power Systems, 10(4), 1995,1843–1850. doi:10.1109/59.476049 [72] Q.H. Wu & J.T. Ma, Power system optimal reactive powerdispatch using evolutionary programming, IEEE Trans. onPower Systems, 10(3), 1995, 1243–1249. doi:10.1109/59.466531 [73] W.S. Jwo, C.W. Liu, C.C. Liu, & Y.T. Hsiao, Hybrid expertsystem and simulated annealing approach to optimal reactivepower planning, IEE Proc. Generation, Transmission &Distribution, 142(4), 1995, 381–385. doi:10.1049/ip-gtd:19951958 [74] J.T. Ma & L.L. Lai, Optimal reactive power dispatch using evolutionary programming, Proc. IEEE/KTH StockholmPower Tech Int. Symp. on Electric Power Engineering, Stockholm, 1995, 662–667. [75] A.S. Sundhararajan & A. Pahwa, Optimal selection of capacitor for radial distribution systems using genetic algorithms,IEEE Trans. on Power Systems, 9(3), 1994, 1499–1507. doi:10.1109/59.336111 [76] K. Iba, Reactive power optimization by genetic algorithm,IEEE Trans. on Power Systems, 9(2), 1994, 685–692. doi:10.1109/59.317674 [77] K.S. Swarup, M. Yoshimi, & Y. Izui, Genetic algorithmapproach to reactive power planning in power systems, Proc.5th Annual Conf. of Power and Energy Society IEE Japan,Tokyo, 1994, 119–124.Load Forecasting [78] M.S. Kandil, S.M. El-Debeiky, & N.E Hasanien, Overviewand comparison of long-term forecasting techniques for a fastdeveloping utility: Part I, Electric Power System Research,58(1), 2001, 11–17. doi:10.1016/S0378-7796(01)00097-9 [79] P.K. Dash, S. Mishra, S. Dash, & A.C. Liew, Geneticoptimization of a self organizing fuzzy-neural network for loadforecasting, Power Engineering Society Winter Meeting, No.2, Columbus, Ohio, January 2000, 1011–1016. [80] E.T.H. Heng, D. Srinivasan, & A.C. Liew, Short term loadforecasting using genetic algorithm and neural networks, Proc.Int. Conf. Energy Management and Power Delivery (EMPD),Singapore, No. 2, March 1998, 576–581. doi:10.1109/EMPD.1998.702749 [81] G.L. Dong, W.L. Byong, & H.C. Soon, Genetic programmingmodel for long-term forecasting of electric power demand,Electric Power System Research, 40(1), 1997, 17–22. doi:10.1016/S0378-7796(96)01125-X [82] S. Majithia, L. Kiernan, & J. Hannan, Intelligent systemsfor demand forecasting, in K. Wardwick, A. Ekwue, & R.Aggarwal (Eds.), Artificial intelligence techniques in powersystems, IEE Power Engineering Series, 22, London, 1997. [83] S.J. Huang & C.L. Huang, Genetic-based Multilayered Perceptron for Taiwan Power System short-term load forecasting,Electric Power System Research, 38(1), 1996, 69–74. doi:10.1016/S0378-7796(96)01065-6 [84] H.T. Yang, C.M. Huang, & C.L. Huang, Identification ofARMAX model for short term load forecasting: An evolutionary approach, IEEE Trans. on Power Systems, 11(1),1996, 403–408. doi:10.1109/59.486125 [85] D.K. Chaturvedi, R.K Mishra, & A. Agarwal, Load forecasting using genetic algorithms, Journal of the Institution ofEngineers (India), 76(EL-3), 1995, 161–165. [86] H. Kato, Y. Sugai, & T. Kawase, Prediction of daily maximumelectric load by a recurrent neural network using GA, Trans.IEE of Japan, 115-B(8), 1995, 875–882. [87] T. Maifeld & G. Sheble, Short-term load forecasting by a neural network and a modified genetic algorithm, InternationalJournal of Electrical Power and Energy Systems, 31(3), 1994,147–152.Unit Commitment doi:10.1016/0378-7796(94)90074-4 [88] N.P. Padhy, Genetic algorithm-based machine learning classifier system model for short-term unit commitment problem,International Journal of Power and Energy Systems, 23(1),2003, 49–61. [89] K.S. Swarup & S. Yamashiro, A genetic algorithm approachto generator unit commitment, International Journal of Electrical Power and Energy Systems, 25(9), 2003, 679–687. doi:10.1016/S0142-0615(03)00003-6 [90] S.R. Paranjothi & V. Balaji, Hybrid genetic algorithm-basedunit commitment, Electric Power Components and Systems,30(10), 2002, 1047–1054. doi:10.1080/15325000290085389 [91] J.M. Arroyo & A.J. Conejo, A parallel repair genetic algorithmto solve the unit commitment problem, IEEE Trans. onPower Systems, 17(4), 2002, 1216–1224. doi:10.1109/TPWRS.2002.804953 [92] W. Xing & F.F. Wu, Genetic algorithm based unit commitment with energy contracts, International Journal of Electrical Power and Energy Systems, 24(5), 2002, 329–336. doi:10.1016/S0142-0615(01)00048-5 [93] C.P. Cheng, C.W. Liu, & C.C. Liu, Unit commitment byannealing-genetic algorithm, International Journal of Electrical Power and Energy Systems, 26(2), 2002, 149–158. doi:10.1016/S0142-0615(01)00024-2 [94] K.S. Swarup & S. Yamashiro, Unit commitment solutionmethodology using genetic algorithm, IEEE Trans. on PowerSystems, 17(1), 2002, 87–91. doi:10.1109/59.982197 [95] C.J. Aldridge, S. Mekee, J.R. Mc Denel, S.J. Gallowak, K.P.Dahal, M.C. Bradley, & J.F. Macqueen, Knowledge-basedgenetic algorithm for unit commitment problem, IEE Proc.Generation, Transmission & Distribution, 146(2), 2001, 146–152. doi:10.1049/ip-gtd:20010022 [96] N.P. Padhy, Unit commitment using hybrid models: Acomparative study for dynamic programming, expert system,fuzzy system and genetic algorithms, International Journal ofElectrical Power and Energy Systems, 23(8), 2001, 827–836. doi:10.1016/S0142-0615(00)00090-9 [97] C.P. Cheng, C.W. Liu, & C.C. Lin, Unit commitment byLagrangian relaxation and genetic algorithms, IEEE Trans.on Power Systems, 15(2), 2000, 707–714. doi:10.1109/59.867163 [98] C.W. Richter, Jr., & G.B. Sheble, A profit based unitcommitment GA for competitive environment, IEEE Trans.on Power Systems, 15(2), 2000 715–721. doi:10.1109/59.867164 [99] S. Huang, Enhancement of thermal unit commitment usingimmune algorithms based optimization approaches, Interna-tional Journal of Electrical Power and Energy Systems, 21(4),1999, 245–252. doi:10.1016/S0142-0615(98)00050-7 [100] K.A. Juste, H. Kita, E. Tanaka, & J. Hasegawa, An evolutionary programming solution to the unit commitment problem,IEEE Trans. on Power Systems, 14(4), 1999, 1452–1459. doi:10.1109/59.801925 [101] A. Rudolf & R. Bayrleithner, A genetic algorithm for solvingthe unit commitment problem of a hydro-thermal powersystem, IEEE Trans. on Power Systems, 14(4), 1999, 1460–1468. doi:10.1109/59.801929 [102] A.H. Mantawy, Y.L. Abdel-Magid, & S.Z. Selim, Integratinggenetic algorithms, tabu search, and simulated annealingfor the unit commitment problem, IEEE Trans. on PowerSystems, 14(3), 1999, 829–836. doi:10.1109/59.780892 [103] A.H. Mantawy, Y.L. Abdel-Magid, & S.Z. Selim, A newgenetic-based tabu search algorithm for unit commitmentproblem, Electric Power System Research, 49(2), 1999, 71–78. doi:10.1016/S0378-7796(98)00045-5 [104] T. Nagata, H. Duo, H. Sasaki, & H. Fujita, A solution methodfor large-scale unit commitment using genetic algorithm,Trans. IEE of Japan, 118-B(4), 1998, 413–419. [105] S. Sen & D.P. Kothari, Optimal thermal generating unitcommitment: A review, International Journal of ElectricalPower and Energy Systems, 20(7), 1998, 443–451. doi:10.1016/S0142-0615(98)00013-1 [106] A.H. Mentaway, Y.L. Abdel-Magid, & S.Z. Selim, A simulatedannealing algorithm for unit commitment, IEEE Trans. onPower Systems, 13(1), 1998, 197–204. doi:10.1109/59.651636 [107] S.J. Huang & C.L. Huang, Application of genetic-based neuralnetworks to thermal unit commitment, IEEE Trans. on PowerSystems, 12(2), 1997, 654–660.220 doi:10.1109/59.589634 [108] H.T. Yang, P.C. Yang, & C.L. Huang, A parallel algorithmapproach to solving the unit commitment problem: Implementation on the transputer networks, IEEE Trans. on PowerSystems, 12(2), 1997, 661–668. doi:10.1109/59.589638 [109] C.J. Aldridge, J. McDonald, & S. McKee, Unit commitmentfor power system using a heuristically augmented genetic algorithm, Proc. IEE Genetic Algorithms in Engineering Systems:Innovations and Applications, University of Strathclyde, UK,1997, 433–438. [110] S.O. Orero & M.R. Irving, Large scale commitment using ahybrid genetic algorithm, International Journal of ElectricalPower and Energy Systems, 19(1), 1997, 45–55. doi:10.1016/S0142-0615(96)00028-2 [111] S.O. Orero & M.R. Irving, A combination of genetic algorithmand Lagrangian relaxation decomposition techniques for thegeneration unit commitment problem, Electric Power SystemResearch, 43(3), 1997, 149–156. doi:10.1016/S0378-7796(97)01175-9 [112] S.A. Kazarlis, A.G. Bakirtzis, & V. Petridis, A geneticalgorithm solution to unit commitment problem, IEEE Trans.on Power Systems, 11, 1996, 83–90. doi:10.1109/59.485989 [113] P.C. Yang, H.T. Yang, & C.L. Huang, Solving the unitcommitment problem with a genetic algorithm through aconstraint satisfaction technique, Electric Power SystemsResearch, 37(1), 1996, 55–65. doi:10.1016/0378-7796(96)01036-X [114] T.T. Maifield & G.B. Sheble, Genetic based unit commitmentalgorithm, IEEE Trans. on Power Systems, 11(3), 1996,1359–1370. doi:10.1109/59.536120 [115] G.B. Sheble, T.T. Maifeld, K. Britting, G. Fahd, & F. Coppinger, Unit commitment by genetic algorithm with penaltymethods and a comparison of Lagrangian search and geneticalgorithm-economic dispatch example, Electrical Power andEnergy Systems, 18(6), 1996, 339–346. doi:10.1016/0142-0615(95)00013-5 [116] T. Ohta, T. Matsui, T. Takata, M. Kato, M. Aoyagi, M.Kunugi, K. Shimada, & J. Nagata, Practical approach to unitcommitment problem using genetic algorithm and Lagrangianrelaxation method, Proc. Int. Conf. ISAP, Orlando, FL,February 1996, 434–440. doi:10.1109/ISAP.1996.501112 [117] U.D. Annakkage, T. Numnonda, & N.C. Pahalawaththa,Unit commitment by parallel simulated annealing, IEE Proc.Generation, Transmission & Distribution, 142(6), 1995, 595–600. doi:10.1049/ip-gtd:19952215 [118] X. Ma, A.A. El-Keib, R.E. Smith, & H. Ma, A geneticalgorithm based approach to thermal unit commitment ofelectric power systems, Electric Power Systems Research,34(1), 1995, 29–36. doi:10.1016/0378-7796(95)00954-G [119] D. Dasgupter & D.R. McGregor, Thermal unit commitmentusing genetic algorithm, IEE Proc. Electric Power Applica-tions, 141(5), 1994, 459–465. [120] G.B. Sheble & G.N. Fahd, Unit commitment literature synopsis, IEEE Trans. on Power Systems, 9(1), 1994, 128–135. doi:10.1109/59.317549 [121] G.B. Sheble & T.T. Mayfield, Unit commitment by genetic algorithm and expert system, Electric Power Systems Research,30(2), 1994, 115–121. doi:10.1016/0378-7796(94)90006-X [122] H. Saitoh, K. Inoue, & J. Toyoda, Genetic algorithm approachto unit commitment, Proc. Int. Conf. ISAP, Montpellier,France, 1994, 583–589. [123] T.T. Maifeld & G.B. Sheble, Evolution of a unit commitmentschedule using a genetic algorithm, Proc. 26th Annual NorthAmerican Power Symp., vol. 2, Kansas State University,Manhattan, KS, 1994, 583–592.Generator Maintenance Scheduling [124] M.Y. El-Sharkh, A.A. El-Keib, & H. Chen, A fuzzy evolutionary programming-based solution methodology for security-constrained generation maintenance scheduling, ElectricPower System Research, 67(1), 2003, 67–72. doi:10.1016/S0378-7796(03)00076-2 [125] M.Y. El-Sharkh & A.A. El-Keib, Maintenance scheduling ofgeneration and transmission systems using fuzzy evolutionaryprogramming, IEEE Trans. on Power Systems, 18(2), 2003,862–866. doi:10.1109/TPWRS.2003.811004 [126] Y. Wang & E. Handschin, A new genetic algorithm forpreventive unit maintenance scheduling of power systems,Electrical Power and Energy Systems, 22(5), 2000, 343–348. doi:10.1016/S0142-0615(99)00062-9 [127] C.J. Aldridge, K.P. Dahal, & J.R. McDonald, Genetic algorithm for scheduling generation and maintenance in powersystems, in Y.H. Song (Ed.), Modern optimization techniquesin power systems (Dordrecht, The Netherlands: Kluwer,1999). [128] S. Huang, A genetic-evolved fuzzy system for maintenancescheduling of generating units, Electrical Power and EnergySystems, 20(3), 1998, 191–195. doi:10.1016/S0142-0615(97)00080-X [129] H. Kim, Y. Hayashi, & K. Nara, An algorithm for thermalunit maintenance scheduling through combined use of GA,SA and TS, IEEE Trans. on Power Systems, 12(1), 1997,329–335. doi:10.1109/59.574955 [130] H. Kim, K. Nara, M. Gen, A method for maintenancescheduling using GA combined with SA, Computers andIndustrial Engineering, 27, 1994, 477–480.Thermal/Hydrothermal Scheduling doi:10.1016/0360-8352(94)90338-7 [131] H.R. Mashhadi, H.M. Shanechi, & C. Lucas, A new geneticalgorithm with Lamarckian individual learning for generationscheduling, IEEE Trans. on Power Systems, 18(3), 2003,1181–1186. doi:10.1109/TPWRS.2003.814888 [132] N. Sinha, R. Chakrabarti, & P.K. Chattopadhyay, Fast evolutionary programming techniques for short-term hydrothermal scheduling, Electric Power System Research, 66(2), 2003,97–103. doi:10.1016/S0378-7796(03)00016-6 [133] N. Sinha, R. Chakrabarti, & P.K Chattopadhyay, Fast evolu-tionary programming techniques for short-term hydrothermalscheduling, IEEE Trans. on Power Systems, 18(1), 2003,214–220. doi:10.1109/TPWRS.2002.807053 [134] T.D.H. Cau & R.J. Kaye, Evolutionary optimisation methodfor multistorage hydrothermal scheduling, IEE Proc. Generation, Transmission & Distribution, 149(2), 2002, 152–156. doi:10.1049/ip-gtd:20020120 [135] S. Baskar, P. Subbaraj, & M.V.C. Rao, Hybrid evolutionaryprogramming solution to short term hydro thermal schedulingproblem, Journal of the Institution of Engineers (India),82(EL-1), 2002, 236–242. [136] X. Yuan, Y. Yuan, & Y. Zhang, An improved genetic algorithm for short-term scheduling of hydroelectric systems,International Journal of Power and Energy Systems, 21(2),2001, 81–86. [137] S.Y.W. Wong, Hybrid simulated annealing/genetic algorithmapproach to short-term hydrothermal scheduling with multiplethermal plants, Electrical Power and Energy Systems, 23(7),2001, 565–575. doi:10.1016/S0142-0615(00)00029-6 [138] P.K. Hota, Short-term hydrothermal scheduling through evolutionary programming technique, Electric Power SystemResearch, 52(2), 1999, 189–196. doi:10.1016/S0378-7796(99)00021-8 [139] H.C. Chang & P.H. Chen, Hydrothermal generation scheduling package: A genetic based approach, IEE Proc. Generation, Transmission & Distribution, 145(4), 1998, 451–457. doi:10.1049/ip-gtd:19981986 [140] S.O. Orero & M.R. Irving, A genetic algorithm modelingframework and solution techniques for short term hydrothermal scheduling, IEEE Trans. on Power Systems, 13(2),1998, 501–518. doi:10.1109/59.667375 [141] K.P. Wong & Y.W. Wong, Hybrid genetic/simulated annealing approach to short-term multiple-fuel-constrained generation scheduling, IEEE Trans. on Power Systems, 12(2), 1997,776–784. doi:10.1109/59.589681 [142] S.O. Orero, Power systems generation scheduling and optimization using evolutionary computing techniques, doctoraldiss., Brunel University, Middlesex, UK, 1996. [143] D. Srinivasan & A. Tettamanzi, Heuristics-guided evolutionary approach to multiobjective generation scheduling, IEEProc. Generation, Transmission & Distribution, 143(6), 1996,541–545. doi:10.1049/ip-gtd:19960462 [144] P.H. Chan & H.C. Chang, Genetic aided scheduling ofhydraulically coupled plants in hydrothermal coordination,IEEE Trans. on Power Systems, 11(2), 1996, 975–981. doi:10.1109/59.496183 [145] K.P. Wong & Y.W. Wong, Combined genetic algorithm/simulated annealing/fuzzy set approach to short-termgeneration scheduling with take-or-pay fuel contract, IEEETrans. on Power Systems, 11(1), 1996, 128–136. doi:10.1109/59.485994 [146] S.O. Orero & M.R. Irving, A genetic algorithm for generator scheduling in power system, International Journal ofElectrical Power and Energy Systems, 18(1), 1996, 19–26. doi:10.1016/0142-0615(94)00017-4 [147] K.P. Wong & Y.W. Wong, Thermal generator scheduling using hybrid genetic/simulated-annealing approach, IEE Proc.221Generation, Transmission & Distribution, 142(4), 1995, 372–380. doi:10.1049/ip-gtd:19951974 [148] K.P. Wong & Y.W. Wong, Short-term hydrothermal scheduling, Part 1: Simulated annealing approach, IEE Proc. Generation, Transmission & Distribution, 141(5), 1994, 497–501. doi:10.1049/ip-gtd:19941350 [149] K.P. Wong & Y.W. Wong, Short-term hydrothermal schedul-ing, Part 2: Parallel simulated annealing approach, IEEProc. Generation, Transmission & Distribution, 141(5), 1994,502–506.Economic Dispatch doi:10.1049/ip-gtd:19941351 [150] N. Kumarappan & M.R. Mohan, Fuel restricted short termeconomic dispatch using evolutionary programming for utilitysystem, Electrical Power and Energy Systems, 25(10), 2003,821–827. doi:10.1016/S0142-0615(03)00062-0 [151] M. Sudhakaran, S.M.R. Slochan, & S. Jeyadevi, An evolutionary computing technique to combined heat and powereconomic dispatch, Journal of the Institution of Engineers(India), 84(EL-3), 2003, 104–108. [152] J.R. Won & Y.M. Park, Economic dispatch solutions withpiecewise quadratic cost functions using improved geneticalgorithm, Electrical Power and Energy Systems, 25(5), 2003,355–361. doi:10.1016/S0142-0615(02)00098-4 [153] N. Sinha, N.R. Chakrabarti, & P.K. Chattopadhyay, Evolutionary programming techniques for economic load dispatch,IEEE Trans. on Evolutionary Computation, 7(1), 2003, 83–94. doi:10.1109/TEVC.2002.806788 [154] I.G. Damousis, A.G. Bakirtzis, & P.S. Dokopoulos, Network-constrained economic dispatch using real-coded genetic algorithm, IEEE Trans. on Power Systems, 18(1), 2003, 198–205. doi:10.1109/TPWRS.2002.807115 [155] J. Nanda & R. Badri Narayanan, Application of geneticalgorithm to economic load dispatch with line flow constraints,Electrical Power and Energy Systems, 24(9), 2002, 723–729. doi:10.1016/S0142-0615(02)00002-9 [156] W.M. Wang & C.M. Huang, An evolutionary based waveletnetwork for real-time power dispatch, Electric Power Components and Systems, 30(11), 2002, 1151–1166. doi:10.1080/15325000290085442 [157] W. Ongsakul & J. Tippayachai, Micro genetic algorithmbased on migration and merit order loading solutions tothe constrained economic dispatch problems, InternationalJournal of Electrical Power and Energy Systems, 26(3), 2002,223–231. doi:10.1016/S0142-0615(01)00019-9 [158] J. Tippayachai, W. Ongsakul, & I. Ngamroo, Parallel micro genetic algorithm for constrained economic dispatch, IEEETrans. on Power Systems, 17(3), 2002, 790–797. doi:10.1109/TPWRS.2002.800948 [159] W. Ongsakul & J. Tippayachai, Parallel micro genetic algorithm based on merit order loading solutions for constraineddynamic economic dispatch, Electric Power System Research,61(2), 2002, 77–88. doi:10.1016/S0378-7796(01)00180-8 [160] S. Baskar, P. Subbaraj, & M.V.C. Rao, Hybrid genetic algorithm solution to emission and economic dispatch problems,Journal of the Institution of Engineers (India), 82(EL-1),2002, 243–249. [161] S.L. Surana & P.S. Bhati, Emission controlled economicgeneration dispatch using genetic algorithm, Journal of theInstitution of Engineers (India), 82(EL-1), 2002, 289–296. [162] M.T. Tsay, W.M. Lin, & J.L. Lee, Application of evolutionaryprogramming for economic dispatch of cogeneration systemsunder emission constraints, International Journal of ElectricalPower and Energy Systems, 23(8), 2001, 805–812. doi:10.1016/S0142-0615(00)00095-8 [163] C. Sivakamasundri, P.S. Kanan, & S. Kamaraj, Economicdispatch with line flow and emission constraints using geneticalgorithm, Journal of the Institution of Engineers (India),82(EL-4), 2001, 195–199. [164] S. Baskar, P. Subbaraj, & M.V.C. Rao, Hybrid genetic algorithm solution to economic dispatch problems with multiplefuel options, Journal of the Institution of Engineers (India),82(EL-4), 2001, 177–183. [165] S. Anudevi, P. Venkatesh, & P.S. Kana, Application ofmicrogenetic algorithm to economic load dispatch, Journal ofthe Institution of Engineers (India), 82(EL-3), 2001, 161–166. [166] T. Jayabarathi, G. Sadasivam, & V. Ramachandran, Evolutionary programming-based multiarea economic dispatch withtie line constraints, Electric Machines and Power Systems,28(12), 2000, 1165–1176. doi:10.1080/073135600449044 [167] P.K. Hota, R. Chakrabarti, & P.K. Chattopadhyay, A simulated annealing-based goal-attainment method for economicemission load dispatch with nonsmooth fuel cost and emission level functions, Electric Machines and Power Systems,28(11), 2000, 1037–1051. doi:10.1080/073135600449099 [168] H.K. Youssef & K.M. El-Naggar, Genetic based algorithmfor security constrained power system economic dispatch,Electric Power System Research, 53(1), 2000, 47–51. doi:10.1016/S0378-7796(99)00039-5 [169] T. Jayabarathi, G. Sadasivam, & V. Ramachandran, Evolutionary programming based economic dispatch of generators with prohibited operating zones, Electric Power SystemResearch, 52(3), 1999, 261–266. doi:10.1016/S0378-7796(99)00025-5 [170] Y.H. Song, C.S.V. Chou, I.K. Yu, & G.S. Wang, Ant colonysearch, advanced engineering-conditioning genetic algorithmsand fuzzy logic controlled economic dispatch problems, inY.H. Song (Ed.), Modern optimization techniques in powersystems (Dordrecht, The Netherlands: Kluwer, 1999). [171] K.P. Wong & J. Yuryevich, Evolutionary-programming-basedalgorithm for environmentally-constrained economic dispatch,IEEE Trans. on Power Systems, 13(2), 1998, 301–306. doi:10.1109/59.667339 [172] Y.H. Song & C.S. Chou, Advanced engineered conditioninggenetic approach to power economic dispatch, IEE Proc.Generation, Transmission & Distribution, 144(3), 1997, 285–292. doi:10.1049/ip-gtd:19970944 [173] F. Li, R. Morgan, & D. Williams, Hybrid genetic approachesto ramping rate constrained dynamic economic dispatch,Electric Power System Research, 43(2), 1997, 97–103. doi:10.1016/S0378-7796(97)01165-6 [174] J.H. Park, S.O. Yang, H.S. Lee, & Y.M. Park, Economicload dispatch using evolutionary algorithms, Proc. Int. Conf.ISAP, Orlando, FL, February 1996, 441–445. doi:10.1109/ISAP.1996.501113 [175] S.O. Orero & M.R. Irving, Economic dispatch of generatorswith prohibited operating zones: A genetic algorithm approach, IEE Proc. Generation, Transmission & Distribution,143(6), 1996, 529–534. doi:10.1049/ip-gtd:19960626 [176] L.L. Lai, J.T. Ma, & K.P. Wong, Evolutionary programmingfor economic dispatch of units with non-smooth input outputcharacteristic functions, Proc. 12th Power Systems Computation Conf. (PSCC), Dresden, Germany, 1996, 492–498. [177] H.T. Yang, P.C. Yang, & C.L. Huang, Evolutionary programming based economic dispatch for units with non-smooth fuelcost functions, IEEE Trans. on Power Systems, 11(1), 1996,112–118. doi:10.1109/59.485992 [178] Y.M. Park & J.R. Won, Improved multi-stage GA basedeconomic dispatch solution with piecewise quadratic costfunction, Trans. Korean IEE, 44(2), 1995, 166–172. [179] B.S. Gerald & K. Brittig, Refined genetic algorithm-economicdispatch example, IEEE Trans. on Power Systems, 10(1),1995, 117–124. doi:10.1109/59.373934 [180] P.H. Chen & H.C. Chang, Large-scale economic dispatch bygenetic algorithm, IEEE Trans. on Power Systems, 10(4),1995, 1919–1926. doi:10.1109/59.476058 [181] G.B. Sheble & K. Brittig, Refined genetic algorithm-economicdispatch example, IEEE Trans. on Power Systems, 10(1),1995, 117–124. doi:10.1109/59.373934 [182] Y.H. Song, F. Li, R. Morgan, & D.T.Y. Cheng, Effectiveimplementation of GAs on power economic dispatch, Proc.Int. Power Engineering Conf., vol. 1, Nanyang TechnologicalUniversity Singapore, 1995, 268–274. [183] Y.H. Song, F. Li, R. Morgan, & D.T.Y. Cheng, Comparisonstudies of GAs in power system economic dispatch, PowerSystem Technology, 19(3), 1995, 28–33. [184] K.S. Swarup, M. Yoshimi, Y. Izui, & N. Nagai, GA approachto environmental constrained optimal economic dispatch,Proc. Int. Conf. ISAP, Montpellier, France, 1994, 707–714. [185] F. Li, Y.H. Song, & R. Morgan, GAs based optimisationapproach to power system economic dispatch, Proc. 29thUniversities Power Engineering Conf., University CollegeGalway, Galway, Ireland, 1994, 680–683. [186] K.P. Wong & Y.W. Wong, Genetic and genetic/simulated-annealing approaches to economic dispatch, IEE Proc. Gen-eration, Transmission & Distribution, 141(5), 1994, 507–513. doi:10.1049/ip-gtd:19941354 [187] A. Bakirtzis, V. Petridis, & S. Kazarlis, Genetic algorithmsolution to the economic dispatch problem, IEE Proc. Generation, Transmission & Distribution, 141(4), 1994, 377–382.222 doi:10.1049/ip-gtd:19941211 [188] B.H. Chowdhury & S. Rahman, A review of recent advancesin economic dispatch, IEEE Trans. on Power Systems, 5(4),1990, 1248–1259.Alarm Processing and Fault Diagnosis doi:10.1109/59.99376 [189] K.M. EL-Naggar & H.K.M. Youssef, A genetic based algorithm for frequency-relaying applications, Electric PowerSystem Research, 55(3), 2000, 173–178. doi:10.1016/S0378-7796(00)00080-8 [190] C.W. So & K.K. Li, Overcurrent relay coordination byevolutionary programming, Electric Power System Research,53(2), 2000, 83–90. doi:10.1016/S0378-7796(99)00052-8 [191] J.T. Alander, T. Mantere, G. Moghadampour, & J. Matila,Searching protection relay response time extremes using genetic algorithm: Software quality by optimization, ElectricPower System Research, 46(3), 1998, 229–233. doi:10.1016/S0378-7796(98)00013-3 [192] W. Wen, C.S. Chang, & W. Fu, New approach to alarmprocessing in power system based on the self governing theoryand a refined genetic algorithm, Electric Machines and PowerSystems, 26(1), 1998, 53–58. doi:10.1080/07313569808955807 [193] L.L. Lai, A.G. Sichanie, & B.J. Gwyn, comparison betweenevolutionary programming and a genetic algorithm for fault-section estimation, IEE Proc. Generation, Transmission &Distribution, 145(5), 1998, 616–620. doi:10.1049/ip-gtd:19982192 [194] Y.C. Huang, H.T. Yang, & C.L. Huang, Developing a newtransformer fault diagnosis system through evolutionary fuzzylogic, IEEE Trans. on Power Delivery, 12(2), 1997, 761–767. doi:10.1109/61.584363 [195] R. Aggarwal & A. Johns, AI for protection systems, in K.Wardwick, A. Ekwue, & R. Aggarwal (Eds.), Artificial intelligence techniques in power systems, IEE Power EngineeringSeries, vol. 22, London, 1997. [196] W. Fushuan & C.S. Chang, A probabilistic approach to alarmprocessing in power systems using a refined genetic algorithm,Proc. Int. Conf. ISAP, Orlando, FL, February 1996, 14–19. doi:10.1109/ISAP.1996.501038 [197] F. Wen & Z. Han, An evolutionary optimization methodto fault section estimation using information for protectiverelays and circuit breakers, Proc. Int. Conf. Power SystemTechnology, Beijing, China, 1994, 1051–1055. [198] L.L. Lai, F.N. Che, K.H. Chu, P.R. Roop, & X.F. Wang,Design of neural networks with genetic algorithms for faultssection estimation, Proc. 29th Universities Power EngineeringConf., vol. 2, Galway, Ireland, 1994, 596–599.Power System Stabilizers [199] Y.L. Abdel-Magid & M.A. Abido, Optimal multiobjectivedesign of robust power system stabilizers using genetic algorithms, IEEE Trans. on Power Systems, 18(3), 2003, 1125–1132. doi:10.1109/TPWRS.2003.814848 [200] K. Hongesombut, Y. Mitani, & K. Tsuji, Power systemstabilizer tuning in multimachine power system based on aminimum phase control method and genetic algorithm, Proc.14th Power Systems Computation Conf. (PSCC), Session 14,Paper 1, Seville, Spain, June 2002, 1–7. [201] D. Menniti, A. Burgio, A. Pinnarelli, V. Principe, N. Scordino,& N. Sorrentino, Damping oscillations improvement by fuzzypower system stabilizers tuned by genetic algorithm, Proc.14th Power Systems Computation Conf. (PSCC), Session 14,Paper 2, Seville, Spain, June 2002, 1–6. [202] M. Abido & Y. Abdel-Magid, Coordinated design of powersystem stabilizers and FACTS based stabilizers using geneticalgorithms, Proc. 14th Power Systems Computation Conf.(PSCC), Session 14, Paper 3, Seville, Spain, June 2002, 1–7. [203] A. Andreoiu & K. Bhattacharya, Genetic algorithm basedtuning of PID power system stabilizers, Proc. 14th PowerSystems Computation Conf. (PSCC), Session 14, Paper 5,Seville, Spain, June 2002, 1–6. [204] M.A. Abido, Parameter optimization of multimachine powersystem stabilizers using genetic local search, Electrical Powerand Energy Systems, 23(8), 2001, 785–794. doi:10.1016/S0142-0615(00)00096-X [205] J. Lu, M.H. Nehrir, & D.A. Pierre, A fuzzy logic-basedself tuning power system stabilizer optimized with a geneticalgorithm, Electric Power System Research, 60(2), 2001,77–83. doi:10.1016/S0378-7796(01)00170-5 [206] M.A. Abido, Simulated annealing based approach to PSS andFACTS based stabilizer tuning, Electrical Power and EnergySystems, 22(4), 2000, 247–258. doi:10.1016/S0142-0615(99)00055-1 [207] P. Lakshmi & M.A. Khan, Stability enhancement of a multimachine power system using fuzzy logic based power system stabilizer tuned through genetic algorithm, InternationalJournal of Electrical Power and Energy Systems, 22(2), 2000,137–145. doi:10.1016/S0142-0615(99)00043-5 [208] M.A. Abido, Robust design of multimachine power systemstabilizers using simulated annealing, IEEE Trans. on EnergyConversion, 15(3), 2000, 297–304. doi:10.1109/60.875496 [209] Y.L. Abdel-Magid, M.A. Abido, S. Al-Baiyat, & A.H.Mantawy, Simultaneous stabilization of multimachine powersystems via genetic algorithms, IEEE Trans. on Power Systems, 14(4), 1999, 1428–1439. doi:10.1109/59.801907 [210] M.A. Abido, Coordinated design of power system stabilizersand static phase shifters using genetic algorithm, ElectricMachines and Power Systems, 27(10), 1999, 1069–1084. doi:10.1080/073135699268722 [211] M.A. Abido & Y.L. Abdel-Magid, A genetic based powersystem stabilizer, Electrical Machines and Power Systems,26(6), 1998, 559–572. doi:10.1080/07313569808955841 [212] Y.L. Abdel-Magid & M.M. Dawoud, Tuning of power systemstabilizers using genetic algorithms, Electric Power SystemResearch, 39(2), 1996, 137–143.Power System Restoration doi:10.1016/S0378-7796(96)01105-4 [213] M.R. Irving, W.P. Luan, & J.S. Daniel, Supply restoration indistribution networks using a genetic algorithm, InternationalJournal of Electrical Power and Energy Systems, 24(6), 2002,447–457. doi:10.1016/S0142-0615(01)00057-6 [214] W.P. Luan, M.R. Irving, & J.S. Daniel, Genetic algorithm forsupply restoration and optimal load shedding in power systemdistribution networks, IEE Proc. Generation, Transmission &Distribution, 149(2), 2002, 145–151. doi:10.1049/ip-gtd:20020095 [215] M.K. Khedkar & V.A. Mujgelwar, Restoration of distributionnetwork using genetic algorithm, Proc. Application of Evolutionary Strategies to Power, Signal Processing and Control,Regional Engineering College Rourkela, India, February 2002,77–81. [216] Y.T. Hsiao & C.Y. Chien, Enhancement of restoration servicein distribution systems using a combination fuzzy-GA method,IEEE Trans. on Power Systems, 15(4), 2000, 1394–1400. doi:10.1109/59.898118 [217] A. Augugliaro, L. Dusonchet, & E.R. Sanseverino, Multiobjective service restoration in distribution networks using anevolutionary approach and fuzzy sets, Electrical Power andEnergy Systems, 22(2), 2000, 103–110. doi:10.1016/S0142-0615(99)00040-X [218] A. Augugliaro, L. Dusonchet, & E.R. Sanseverino, Servicerestoration in compensated distribution networks using ahybrid genetic algorithm, Electric Power System Research,46(1), 1998, 59–66. doi:10.1016/S0378-7796(98)00025-X [219] Y. Fukuyama, H.D. Chiang, & K.N. Miu, Parallel geneticalgorithm for service restoration in electric power distributionsystems, International Journal of Electrical Power and EnergySystems, 18(2), 1996, 111–119. doi:10.1016/0142-0615(95)00016-X [220] Y. Fukuyama, H. Endo, & Y. Nakanishi, A hybrid system forservice restoration using expert system and genetic algorithm,Proc. Int. Conf. ISAP, Orlando, FL, February 1996, 394–398. doi:10.1109/ISAP.1996.501105 [221] T. Oyama, Restorative planning of power system using geneticalgorithm with branch exchange method, Proc. Int. Conf.ISAP, Orlando, FL, February 1996, 175–179. doi:10.1109/ISAP.1996.501064 [222] S. Curcic, C.S. Ozveren, L. Crowe, & P.K.L. Lo, Electricpower distribution network restoration: A survey of papersand a review of the restoration problem, Electric PowerSystem Research, 35(2), 1995, 73–86. doi:10.1016/0378-7796(95)00991-4 [223] Y. Fukuyama & Y. Ueki, Application of GAs to servicerestoration in distribution systems, Electrical Engineering inJapan, 115(3), 1995, 30–38. doi:10.1002/eej.4391150303 [224] Y. Fukuyama & H.D. Chiang, A parallel GA for servicerestoration in electric power distribution systems, Proc. 4thIEEE Int. Conf. on Fuzzy Systems, New York, 1995, 275–282.Optimal Power Flow [225] S.R. Paranjothi & K. Anburaja, Optimal power flow usingrefined genetic algorithm, Electric Power Components andSystems, 30(10), 2002, 1055–1063. doi:10.1080/15325000290085343 [226] J. Yuryevich & K.P. Wong, Evolutionary programming basedoptimal power flow algorithm, IEEE Trans. on Power Sys-tems, 14(4), 1999, 1245–1250.223 doi:10.1109/59.801880 [227] T. Numnonda & U.D. Annakkage, Optimal power dispatch inmultinode electricity market using genetic algorithm, ElectricPower System Research, 49(3), 1999, 211–220. doi:10.1016/S0378-7796(98)00139-4 [228] L.L. Lai, J.T. Ma, R. Yokoyama, & M. Zhao, Improvedgenetic algorithms for optimal power flow under both normaland contingent operation states, International Journal ofElectrical Power and Energy Systems, 19(5), 1997, 287–292. doi:10.1016/S0142-0615(96)00051-8 [229] L.L. Lai & J.T. Ma, Optimal power flow in FACTS usinggenetic algorithms, IEEE/KTH, Stockholm Power Tech Int.Symp. on Electric Power Engineering, Stockholm, 1995, 484–489.Power System Control [230] S.P. Ghoshal & S.K. Goswami, Application of GA basedoptimal integral gains in fuzzy based active power-frequencycontrol of non-reheat and reheat thermal generating systems,Electric Power System Research, 67(2), 2003, 79–88. doi:10.1016/S0378-7796(03)00087-7 [231] S.K. Aditya, Design of load frequency controllers using geneticalgorithm for two area interconnected hydro power system,Electric Power Components and Systems, 31(1), 2003, 81–94. doi:10.1080/15325000390112071 [232] D. Rerkpreedapong, A. Hasanovic, & A. Feliachi, Robustload frequency control using genetic algorithms and linearmatrix inequalities, IEEE Trans. on Power Systems, 18(2),2003, 855–861. doi:10.1109/TPWRS.2003.811005 [233] S. Latha, S.M.R. Slochanal, & K. Balamuran, Optimum sizeand location of unified power flow controllers using evolu-tionary programming, Journal of the Institution of Engineers(India), 83(EL-4), 2002, 242–245. [234] Y.P. Wang, N.R. Watson, & H.H. Chong, Modified geneticalgorithm approach to design of an optimal PID controllerfor AC-DC transmission systems, International Journal ofElectrical Power and Energy Systems, 26(1), 2002, 59–69. doi:10.1016/S0142-0615(01)00006-0 [235] A.L.B. Bomfim, G.N. Taranto, & D.M. Falcao, Simultaneoustuning of power system damping controllers using geneticalgorithms, IEEE Trans. on Power Systems, 15(1), 2000,163–169. doi:10.1109/59.852116 [236] S.M. Badran & H.N. Al-Duwaish, Optimal output feedbackcontroller based on genetic algorithms, Electric Power SystemResearch, 50(1), 1999, 7–15. doi:10.1016/S0378-7796(98)00061-3 [237] X.R. Chen, N.C. Pahalawaththa, U.D. Annakkage, & C.S.Kumble, Design of decentralized output feedback TCSCdamping controllers by using simulated annealing, IEE Proc.Generation, Transmission & Distribution, 145(5), 1998, 553–558. doi:10.1049/ip-gtd:19982184 [238] J. Wen, S. Cheng, & O.P. Malik, A synchronous generatorfuzzy excitation controller optimally designed with a geneticalgorithm, IEEE Trans. on Power Systems, 13(3), 1998,884–889. doi:10.1109/59.708763 [239] M. Reformat, E. Kuffel, D. Woodford, & W. Pedrycz, Application of genetic algorithms for control design in powersystems, IEE Proc.Generation, Transmission & Distribution,145(4), 1998, 345–354. doi:10.1049/ip-gtd:19982003 [240] G.N. Taranto & D.M. Falcao, Robust decentralized controldesign using genetic algorithms in power system dampingcontrol, IEE Proc. Generation, Transmission & Distribution,145(1), 1998, 1–6. doi:10.1049/ip-gtd:19981689 [241] C.S. Chang, W. Fu, & F. Wen, Load frequency control usinggenetic algorithm based fuzzy gain stabilizing PI controller,Electric Machines and Power Systems, 26(1), 1998, 39–52. doi:10.1080/07313569808955806 [242] P. Ju, E. Hands Chin, & F. Reyer, Genetic algorithm aidedcontroller design with application to SVC, Proc. IEE-Pt. B,143(3), 1996, 258–262. doi:10.1049/ip-gtd:19960330 [243] L.L. Lai & J.T. Ma, Power flow control with UPFC usinggenetic algorithms, Proc. Int. Conf. ISAP, Orlando, FL,February 1996, 373–377. doi:10.1109/ISAP.1996.501101 [244] X.R. Chen, N.C. Pahalawaththa, U.D. Annakkage, & C.S.Kumble, Simulated annealing for the design of power systemdamping controllers, Electric Power System Research, 39(1),1996, 67–72.Reconfiguration doi:10.1016/S0378-7796(96)01110-8 [245] B. Venkatesh & R. Ranjan, Optimal radial distribution system reconfiguration using fuzzy adaptation of evolutionaryprogramming, International Journal of Electrical Power andEnergy Systems, 25(10), 2003 775–780. doi:10.1016/S0142-0615(03)00046-2 [246] Y.C. Huang, Enhanced genetic algorithm-based fuzzy multi-objective approach to distribution network reconfiguration,Proc. IEE-Pt. B, 149(5), 2002, 615–620. doi:10.1049/ip-gtd:20020512 [247] W.M. Lin, F.S. Cheng, & M.T. Tsay, Distribution feederreconfiguration with refined genetic algorithm, IEE Proc.Generation, Transmission & Distribution, 147(6), 2000, 349–354. doi:10.1049/ip-gtd:20000715 [248] Y.H. Song, G.S. Wang, A.T. Johns, & P.Y. Wang, Distribution network reconfiguration for loss reduction using fuzzycontrolled evolutionary programming, IEE Proc. Generation,Transmission & Distribution, 144(4), 1997, 345–350. doi:10.1049/ip-gtd:19971101 [249] D. Choi & J. Hasegawa, An application of GAs to the distribution system loss minimization re-configuration problem,Proc. Int. Power Engineering Conf., Nanyang TechnologicalUniversity, Singapore, 1995, 436–441. [250] D. Choi & J. Hasegawa, The application of a GA witha chromosome limited life for the distribution system lossminimization re-configuration problem, Trans. IEE of Japan,115-B(7), 1995, 741–748. [251] C.C. Kuo & H.C. Chang, Applying a refined GA to networkreconfiguration for loss reduction, Proc. 5th Annual Conf. ofPower and Energy Society IEE Japan, Tokyo, 1994, 37–42. [252] D. Choi & J. Hasegawa, Improvement of GA convergencecharacteristics for distribution system loss minimization reconfiguration, Proc. 5th Annual Conf. of Power and EnergySociety IEE Japan, Tokyo, 1994, 19–24.Other Areas of Power System [253] K.P. Wong, J. Yuryevich, & A. Li, Evolutionary-programming-based load flow algorithm for systems containing unified power flow controllers, IEE Proc. Generation, Transmission & Distribution, 150(4), 2003, 441–446. doi:10.1049/ip-gtd:20030405 [254] J.Y. Wen, Q.H. Wu, K.I. Nuttall, D.W. Shimmin, & S. J.Cheng, Construction of power system load models and network equivalence using an evolutionary computation technique, Electrical Power and Energy Systems, 25(4), 2003,293–299. doi:10.1016/S0142-0615(02)00080-7 [255] Q.H. Wu, J.Y. Wen, K.I. Nuttall, D.W. Shimmin, & S.J. Chen,Power system load modeling by evolutionary computationbased on system measurements, Electric Power Componentsand Systems, 31(5), 2003, 423–439. doi:10.1080/15325000390112288 [256] B. Milosevic & M. Begovic, Nondominated sorting geneticalgorithm for optimal phasor measurement placement, IEEETrans. on Power Systems, 18(1), 2003, 69–75. doi:10.1109/TPWRS.2002.807064 [257] N. Samaan & C. Singh, Adequacy assessment of power systemgeneration using a modified simple genetic algorithm, IEEETrans. on Power Systems, 17(4), 2002, 974–981. doi:10.1109/TPWRS.2002.804994 [258] S. Mishra, P.K. Dash, P.K. Hota, & M. Tripathy, Geneticallyoptimized neuro-fuzzy IPFC for damping modal oscillationsof power system, IEEE Trans. on Power Systems, 17(4),2002, 1140–1147. doi:10.1109/TPWRS.2002.804958 [259] S.L. Surana & R.P. Maheshwari, Cost minimization for radialdistribution feeder using genetic algorithm, Journal of theInstitution of Engineers (India), 82(EL-1), 2002, 297–303. [260] A.F. Otero, J. Cidras, & C. Garrido, Grounding grid design using evolutionary computation-based methods, ElectricPower Components and Systems, 30(2), 2002, 151–165. doi:10.1080/153250002753427833 [261] L. Shi & G. Xu, Self-adaptive evolutionary programmingand its application to multi-objective optimal operation ofpower systems, Electric Power System Research, 57(3), 2001,181–187. doi:10.1016/S0378-7796(01)00086-4 [262] R.H. Liang & Y.S. Wang, Main transformer ULTC and capacitors scheduling by simulated annealing approach, ElectricalPower and Energy Systems, 23(7), 2001, 531–538. doi:10.1016/S0142-0615(00)00086-7 [263] V. Galdi, L. Ippolito, A. Piccolo, & A. Vaccaro, Parameteridentification of power transformers thermal model via geneticalgorithms, Electric Power System Research, 60(2), 2001,107–113. doi:10.1016/S0378-7796(01)00173-0 [264] S. Gerbex, R. Cherkaoui, & A.J. Germond, Optimal locationof multi-type FACTS devices in a power system by means ofgenetic algorithms, IEEE Trans. on Power Systems, 16(3),2001, 537–544. doi:10.1109/59.932292 [265] A. Borghetti, R. Caldon, & C.A. Nucci, Generic dynamic loadmodels in long-term voltage stability studies, International224Journal of Electrical Power and Energy Systems, 22(4), 2000,291–301. doi:10.1016/S0142-0615(99)00063-0 [266] M. Zaki, M. Abdel-Salam, & A. Abdel-Hakim, The useof genetic algorithms for assessment of high voltage fields,Computer and Electrical Engineering, 26(6), 2000, 423–443. doi:10.1016/S0045-7906(99)00049-X [267] C.W. Richter, Jr., G.B. Sheble, & Ashlock, Comprehensive bidding strategies with genetic programming/finite stateautomation, IEEE Trans. on Power Systems, 14(4), 1999,1207–1212. doi:10.1109/59.801874 [268] J. Zhu, G. Bilbro, & M.Y. Chow, Phase balancing usingsimulated annealing, IEEE Trans. on Power Systems, 14(4),1999, 1508–1513. doi:10.1109/59.801943 [269] K.P. Wong, A. Li, & T.M.Y. Law, Advanced, constrained,genetic algorithm load flow method, IEE Proc. Generation,Transmission & Distribution, 146(6), 1999, 609–616. doi:10.1049/ip-gtd:19990638 [270] P. Paterni, S. Vitet, M. Bena, & A. Yokoyama, Optimallocation of phase shifters in the French network by geneticalgorithm, IEEE Trans. on Power Systems, 14(1), 1999,37–42. doi:10.1109/59.744481 [271] C.S. Chang, J.S. Low, & D. Srinivasan, Application of geneticalgorithms to determine worst-case switching over voltageof MRT systems, IEE Proc. Electric Power Applications,146(1), 1999, 81–87. doi:10.1049/ip-epa:19990191 [272] L.L. Lai & J.T. Ma, Multitime-interval scheduling for dailyoperation of a two-cogeneration system with evolutionaryprogramming, Electrical Power and Energy Systems, 20(5),1998, 305–311. doi:10.1016/S0142-0615(98)00009-X [273] C.W. Richter, Jr., & G.B. Sheble, Genetic algorithm evolutionof utility bidding strategies for the competitive marketplace,IEEE Trans. Power Systems, 13(1), 1998, 256–261. doi:10.1109/59.651644 [274] J.W. Nims, A.A. El-Keib, & R.E. Smith, Contingency rankingfor voltage stability using a genetic algorithm, Electric PowerSystem Research, 43(1), 1997, 69–76. doi:10.1016/S0378-7796(97)01162-0 [275] K.P. Wong, A. Li, & M.Y. Law, development of constrained-genetic-algorithm load-flow method, Proc. IEE-Pt. B, 144(2),1997, 87–90. doi:10.1049/ip-gtd:19970847 [276] D. Srinivasan & A.G.B. Tettamanzi, An evolutionary algorithm for evaluation of emission compliance options in viewof the Clean Air Act amendments, IEEE Trans. on PowerSystems, 12(1), 1997, 336–341. doi:10.1109/59.574956 [277] Y.L. Abdel-Magid, M. Bettayeb, & M.M. Dawoud, Simultaneous stabilization of power systems using genetic algorithms,IEE Proc. Generation, Transmission & Distribution, 144(1),1997, 39–44. doi:10.1049/ip-gtd:19970785 [278] C.S. Chang, Q.Z. Yu, A.C. Liew, & S. Elangovan, Geneticalgorithm tuning of fuzzy SVC for damping power systeminter-area oscillations, Proc. 4th IEE Int. Conf. on Advancesin Power System Control, Operation and Management (AP-SCOM), vol. 2, November 1997, 509–514. doi:10.1049/cp:19971886 [279] R.E. Brown, S. Gupta, R.D. Christie, & S.S. Venkata, Agenetic algorithm for reliable distribution system design, Proc.Int. Conf. ISAP, Orlando, FL, February 1996, 29–33. doi:10.1109/ISAP.1996.501040 [280] M.A. El-Sharkawi & S.J. Huang, Development of geneticalgorithm embedded Kohonen neural network for dynamicsecurity assessment, Proc. Int. Conf. ISAP, Orlando, FL,February 1996, 44–49. doi:10.1109/ISAP.1996.501042 [281] M. Sakata & S. Iwamoto, Genetic algorithm based real-timerating for short-time thermal capacity of duct installed powercables, Proc. Int. Conf. ISAP, Orlando, FL, February 1996,85–90. doi:10.1109/ISAP.1996.501049 [282] J.X. Xu, C.S. Chang, & X.W. Wang, Constrained multi-objective global optimization of longitudinal interconnectedpower system by genetic algorithm, IEE Proc. Generation,Transmission & Distribution, 143(5), 1996, 435–446. doi:10.1049/ip-gtd:19960418 [283] L.L. Lai & J.T. Ma, Application of evolutionary programmingto transient and sub-transient parameter estimation, IEEETrans. on Energy Conversion, 11, 1996, 523–530. doi:10.1109/60.537003 [284] H. Rudnick, R. Palma, E. Cura, & C. Silva, Economicallyadapted transmission system in open access schemes: Application of genetic algorithm, IEEE Trans. on Power Systems,11(3), 1996, 1427–1440. doi:10.1109/59.535684 [285] I.J. Remirez-Rosado & J.L. Bernal-Agustin, Optimization ofpower distribution network by genetic algorithm, International Journal of Power and Energy Systems, 15(3), 1995,104–110. [286] J.T. Ma & Q.H. Wu, Generator parameter identificationusing evolutionary programming, Electrical Power and EnergySystems, 17(6), 1995, 417–423. doi:10.1016/0142-0615(94)00015-8 [287] I.O. Habiballah & M.R. Irving, Multi-partitioning of powersystem state estimation networks using simulated annealing,Electric Power System Research, 34(2), 1995, 117–120. doi:10.1016/0378-7796(95)00964-3 [288] G. Levitin, S.M. Tov, & D. Elmakis, Genetic algorithm foroptimal sectionalizing in radial distribution systems withalternative supply, Electric Power System Research, 35(3),1995, 149–155. doi:10.1016/0378-7796(95)01002-5 [289] G. Levitin, S.M. Tov, & D. Elmakis, Genetic algorithm foropen-loop distribution system design, Electric Power SystemResearch, 32(2), 1995, 81–87. doi:10.1016/0378-7796(94)00909-N [290] J.E. Lansberry & L. Wozniak, Adaptive hydro generatorgovernor tuning with a genetic algorithm, IEEE Trans. onEnergy Conversion, 9(1), 1994, 179–185. doi:10.1109/60.282490
Important Links:
Go Back