R. Ranjan, B. Venkatesh, and D. Das
[1] R.N Adams & M.A Laughton, Optimal planning of powernetworks using mixed integer programming, Proc. IEE, 121 (2),1974, 139–145. [2] M. Ponnavaiko, K.S.P. Rao & S.S. Venkata, Distribution systemplanning though a quadrature mixed integer programmingapproach, IEEE PES Transmission and Distribution Conf.,Anaheim, CA, 1986, Paper No. 86T&D521-9. [3] M. Ponnavaiko & K.S.P Rao, Optimal distribution systemplanning, IEEE Trans. on Power Apparatus and Systems,100(6), 1981, 2969–2977. doi:10.1109/TPAS.1981.316370 [4] W.C. Kiran & R.B. Adler, A distribution system cost modeland its application to optimal conductor sizing, IEEE Trans.on Power Apparatus and Systems, 101(2), 1982, 271–275. doi:10.1109/TPAS.1982.317102 [5] M. Ponnavaiko & K.S.P. Rao, An approach to optimaldistribution system planning through conductor gradation,IEEE Trans. on Power Apparatus and Systems, 101(6), 1982,1735–1742. doi:10.1109/TPAS.1982.317227 [6] H.N. Tram & D.L. Wall, Optimal conductor selection inplanning radial distribution systems, IEEE Trans. on PowerSystems, 3 (1), 1988, 200–206. doi:10.1109/59.43199 [7] S. Bhowmik, S.K. Goswami, & P.K Bhattacherjee, A new powerdistribution planning through reliability evaluation technique,Electrical Power System Research, 54 (3), 2000, 169–179. doi:10.1016/S0378-7796(99)00086-3 [8] S. Sivanagaraju, N. Srinivasulu, M. Vijayakumar, & T. Ramana, Optimal conductor selection for radial distribution systems, Electrical Power Systems Research, 63 (2), 2002, 95–103. doi:10.1016/S0378-7796(02)00081-0 [9] R. Ranjan & D. Das, Novel computer algorithm for solvingradial distribution networks, Journal of Electrical PowerComponents and Systems, 31 (1), 2003, 95–107. doi:10.1080/15325000390112099 [10] R. Ranjan, B. Venkatesh, & D. Das, A new algorithm forpower distribution systems planning, Journal of ElectricalPower Systems Research, 62 (1), 2002, 55–65.230AppendixTable 1Common Data for Examples 1 and 2Type of Area of Resistance Reactance Maximum CurrentConductor Cross (Ω/km) (Ω/km) Carrying CapacitySection CMAX (Amp.)(mm2)Squirrel 12.90 1.3760 0.3896 115.0Weasel 19.35 0.9108 0.3797 150.0Rabbit 32.26 0.5441 0.3673 208.0Raccoon 48.39 0.3657 0.3579 270.0Other Data:C = Rs. 500/mm2/Km; KE = Rs. 0.50/KWhKp = Rs. 2500/kW; Lsf = 0.20; α = 0.10Table 2Line Data of Example 1.Branch Type of Sending end Receiving Length(jj) Conductors Node m1 End Node m2 Len(jj)(k)1 Raccoon 1 2 2.002 Raccoon 2 3 1.603 Raccoon 3 4 2.304 Raccoon 4 5 2.905 Rabbit 5 6 2.206 Rabbit 6 7 1.577 Rabbit 7 8 2.408 Rabbit 8 9 4.09 Weasel 9 10 2.3010 Weasel 10 11 2.5011 Weasel 11 12 2.7012 Squirrel 12 13 3.2013 Squirrel 13 14 1.7014 Squirrel 14 15 3.8015 Squirrel 15 16 2.0Table 3Load Data for Example 1Node Real Reactive Node Real ReactiveNo. Power Power Load No. Power PowerLoad (kW) (kVAr) Load (kW) Load (kVAr)1(s/s) 0.00 0.00 9 37.5 33.02 48.75 43.0 10 37.5 33.03 37.5 33.0 11 75.0 66.104 37.5 33.0 12 18.75 16.55 75.0 66.10 13 48.75 43.06 48.75 43.0 14 48.75 43.07 37.5 33.0 15 75.0 66.108 12.0 10.6 16 37.50 33.0Table 4Base Case Load Flow Results of Example 1Node Voltage Magnitude Node Voltage MagnitudeNo. (p.u.) No. (p.u.)1(s/s) 1.0000 9 0.934742 0.99185 10 0.925753 0.98577 11 0.917024 0.97752 12 0.909885 0.96775 13 0.899176 0.95951 14 0.894757 0.95420 15 0.887908 0.94677 16 0.88670Total Real Power Loss = 53.47 kWTotal reactive power Loss = 37.13 kVArMinimum Voltage Magnitude |V16| = 0.88670 p.u.Table 5Load Flow Results of Example 1 after Conductor GradingNode Voltage Magnitude Node Voltage MagnitudeNo. (p.u.) No. (p.u.)1(s/s) 1.0000 9 0.942922 0.99196 10 0.938153 0.98596 11 0.933514 0.97784 12 0.928705 0.96823 13 0.923456 0.96190 14 0.921317 0.95783 15 0.916508 0.95213 16 0.91533Total Real Power Loss = 37.36 kWTotal reactive power Loss = 35.15 kVArMinimum Voltage Magnitude | V16| = 0.91533 p.u.Table 6Modifications in the Feeder Conductor Type afterConductor GradingBranch No. Existing Feeder (From) Modification (To)5 to 8 Rabbit Raccoon9 to 10 Weasel Raccoon11 Weasel Rabbit12 to 13 Squirrel Rabbit14 Squirrel Weasel231Table 7Comparison of ResultsMinimum Voltage Real Power Loss|V16| (kW)Base case 0.88670 53.47After conductor 0.91533 37.36gradingNet power loss reduction after conductorgrading = (53.47 − 37.36) = 16.11 kWTable 8Line Data for Example 2Branch Sending End Receiving End Length(jj) Node m1 Node m2 Len(jj)1 1 2 1.02 2 3 1.33 3 4 1.64 4 5 2.95 5 6 3.26 6 7 1.57 7 8 3.48 2 9 2.59 9 10 2.210 2 11 1.411 11 12 2.3312 12 13 4.013 13 14 3.514 12 15 1.015 3 16 2.916 16 17 2.217 5 18 1.6718 18 19 2.4519 19 20 1.4620 20 21 1.521 21 22 1.722 20 23 1.823 23 24 2.924 24 25 1.125 21 26 1.926 26 27 2.027 27 28 2.028 6 29 1.529 29 30 2.730 30 31 1.5Table 9Load Data of Example 2Node kVA Node kVA Node kVANo. Load No. Load No. Load1(s/s) 0.0 12 25.0 23 50.02 16.0 13 65.0 24 25.03 50.0 14 65.0 25 25.04 50.0 15 16.0 26 16.05 100.0 16 50.0 27 25.06 25.0 17 25.0 28 25.07 25.0 18 25.0 29 16.08 100.0 19 25.0 30 50.09 50.0 20 16.0 31 25.010 50.0 21 65.011 16.0 22 65.0Table 10Optimal Selection of Branch Conductor for Example 2Branch No. Type of Conductor1 to 4 and 17 Raccoon5, 18 and 19 Rabbit10, 11 and 20 Weasel6 to 9, 12 to 16 and 21 to 30 SquirrelTable 11Load Flow Results of Example 2Node Voltage Magnitude Node Voltage MagnitudeNo. (p.u.) No. (p.u.)1 1.0000 17 0.986982 0.99489 18 0.973113 0.98992 19 0.968504 0.98466 20 0.965955 0.97576 21 0.963596 0.97147 22 0.962377 0.96930 23 0.963968 0.96555 24 0.962359 0.99220 25 0.9620510 0.99101 26 0.9622011 0.99283 27 0.9610912 0.98970 28 0.9605413 0.98406 29 0.9699714 0.98159 30 0.9677315 0.98953 31 0.9673216 0.98757Total Real Power loss = 23.405 kWTotal reactive power loss = 19.032 kVArMinimum Voltage magnitude |V28| = 0.96054 p.u.232 doi:10.1016/S0378-7796(02)00044-5
Important Links:
Go Back