N.C. Sahoo, R. Ranjan, P.K. Dash, and G. Panda
[1] L. Gyugyi, Dynamic compensation of AC transmission linesby solid-state synchronous voltage sources, IEEE Trans. onPWRD, 9(2), 1994, 904–911. doi:10.1109/61.296273 [2] B.N. Singh, A. Chandra, & K. Al-Haddad, DSP-based indirect-current-controlled STATCOM, Part 2: Multifunctional capabilities, IEE Proc. Part B, 147(2), 2000, 113–118. doi:10.1049/ip-epa:20000067 [3] B.M. Han, G.G. Karady, J.K. Park, & S.I. Moon, Interactionanalysis model for transmission static compensator with EMTP,IEEE Trans. on PWRD, 13(4), 1998, 1297–1302.288 doi:10.1109/61.714499 [4] H.F. Hang & F. Li, Multivariable sampled regulators for thecoordinated control of STATCOM AC and DC voltage, IEEProc. Part C, 14(2), 2000, 93–98. doi:10.1049/ip-gtd:20000008 [5] S. Mori, K. Matsuno, M. Takeda, & M. Seto, Development ofa large static Var generator using self-commutated invertersfor improving power system stability, IEEE Trans. on PowerSystems, 1, 1993, 371–378. doi:10.1109/59.221218 [6] M. Mohaddes, A.M. Gole, & P.G. McLaren, A neural networkcontrolled optimal pulse-width modulated STATCOM, IEEETrans. on PWRD, 14(2), 1999, 481–488. doi:10.1109/61.754092 [7] K.R. Padiyar & A.M. Kulkarni, Control design and simulationof a unified power flow controller, IEEE Trans. on PWRD,13(4), 1998, 1348–1354. doi:10.1109/61.714507 [8] C. Schauder & H. Mehta, Vector analysis and control ofadvanced static VAR compensators, IEE Proc. Part C, 140(4),1993, 299–306. [9] P.W. Lehn & M.R. Iravani, Experimental evaluations of STAT-COM closed loop dynamics, IEEE Trans. on PWRD, 13(4),1998, 1378–1384. doi:10.1109/61.714511 [10] J.E. Slotine & W. Li, Applied nonlinear control (EnglewoodCliffs, NJ: Prentice-Hall, 1991). [11] W. Mielczarski & A.M. Zajaczkowski, Nonlinear field voltagecontrol of a synchronous generator using feedback linearization,Automatica, 30(10), 1994, 1625–1630. doi:10.1016/0005-1098(94)90102-3 [12] H. Sira-Ramirez & M. Ilic-Spong, Exact linearization inswitched-mode DC-to-DC power converters, InternationalJournal of Control, 50(2), 1989, 511–524. doi:10.1080/00207178908953380 [13] D.I. Kim, I.J. Ha, & M.S. Ko, Control of induction motor via feedback linearization with input-output decoupling,International Journal of Control, 51(4), 1990, 863–886. doi:10.1080/00207179008934102 [14] P. Vas, Vector control of AC machines (New York: OxfordUniversity Press, 1990). [15] B.C. Lesieutre, P.W. Sauer, & M.A. Pai, Development andcomparative study of induction machine based dynamic P, Qload models, IEEE Trans. on PWRS, 10(1), 1995, 182–191. doi:10.1109/59.373941 [16] P.M. Anderson & A A. Fouad, Power system control andstability (Piscataway, NJ: IEEE Press, 1994). [17] A.R. Bergen, Power system analysis (Englewood Cliffs, NJ:Prentice-Hall, 1986).AppendixNomenclature:δ rotor angle with respect to the infinitebus system voltageM effective inertia constantEqtransient q-axis voltagexd d-axis reactancexq q-axis reactancexdd-axis transient reactanceEfd direct excitation voltageTdo equivalent transient rotor time constantPm mechanical powerPe, Qe active and reactive powerThe subscript “0” indicates the initial value.Linear Impedance Load:Y = G − jB,Load bus voltage = Vrd + jVrq,Load current = (GVrd + BVrq) + j(GVrq − BVrd)Nonlinear Impedance Load:PL = PL0VrVr0n1,QL = QL0VrVr0n2where n1 and n2 are the indices (>0)Rectifier Load:Figure A1. Structure of rectifier load.Vdc,r =3√2πVr,LL cos β −3xridc,rπ,irL =√6πidc,r,and cos γ = cos β −idc,rxr√2Vr,LL,β = firing angle, γ = phase difference between ac-side voltage and current. Pdc,r = 0.8, Rdc,r = 7, β = 100, xr = 0.1Induction Motor Load [15]:A third-order induction motor model is taken as givenbelow.Stator Vds = Ed− X Iqs and Vqs = Eq− X IdsRotor T0dEqdt= −Eq+X2mXrIds − sXrRrEdand T0 dEddt= −Ed+X2mXrIqs − sXrRrEqTorqueEquation 2Hdsdt= TL − (EqIqs + EdIds).TL = k0ωr = k0ωs(1 − s) = kL(1 − s),X = XsXr − X2mXr, T0=XrωsRr,s =ωs − ωrωs,Xs = 1.2287, Xr = 1.2233, Xm = 1.18, Rr = 0.0053, ωs =2πf0, H = 0.41, Rs = 0.0079, Vds and Vqs correspond tovoltages of the load-bus.Synchronous Generator Mathematical Model:The synchronous generator is described by a third-ordernonlinear mathematical model [16, 17]:289dδdt= ∆ω,d∆ωdt=1M[Pm − Pe],dEqdt=1Tdo[Efd − Eq− (xd − xd)id]where ∆ω = ω − ω0.AVR and PSS:The excitation system of the generator consists of anautomatic voltage regulator (AVR) with a power systemstabilizer (PSS). The complete system is shown in Fig. A2.Figure A2. AVR + PSS control system of the generatingsystem.System Data:ω0 = 2πf0, f0 = 50 Hz, Re = 0.05 p.u., Res = Re, ω0Le(=Xe) = 0.15 p.u., Xes = Xe, Rp = 0.04 p.u., ω0Lp(=Xp) =0.1 p.u., Rdc = 150, C = 5000 µF, xd = 1.9 p.u., xq = 1.6 p.u,xd= 0.17 p.u., Tdo = 4.314 sec., M = 0.03 p.u., Ke = 50,Te = 0.1 sec, Kpw = 5, Kiw = 12, Emaxfd = 6 p.u., Eminfd =−6 p.u., umaxpss = 0.01 p.u., uminpss = −0.01 p.u., PL0 = 0.1 p.u.,QL0 = 0.1 p.u., n1 = n2 = 2.0Cascade PI Controller for Distribution System:Kpv = 0.5, Kiv = 100, Kpm = 0.5, Kim = 1,Kpc = 1, Kic = 10, Kpα = 0.5, Kiα = 0.5Cascade PI Controller for Generation System:Kpv = 1, Kiv = 10 , Kpm = −0.01 , Kim = −0.1,Kpc = 1, Kic = 2, Kpα = −0.1, Kiα = −0.1Feedback Linearizing Controller (For Both Distributionand Generation System):Desired pole locations for computation of K11 and K12 are:s1 = −100 and s2 = −10. Desired pole locations for compu-tation of K21, K22 and K23 are: s1 = −200, s2 = −100, ands3 = −50.
Important Links:
Go Back