WEAR PARTICLE ANALYSIS BASED ON SELF-ORGANIZING CLUSTERS

Qurban A. Memon and M.S. Laghari

References

  1. [1] B.J. Roylance & T.M. Hunt, Wear debris analysis (Oxford:Coxmoor, 1999).
  2. [2] H.P. Jost, Tribology: Origin and future, Wear, 139, 1990,1–17. doi:10.1016/0043-1648(90)90068-L
  3. [3] T.M. Hunt, Handbook of wear debris analysis and particledetection in fluids (London: Elsevier Science, 1993).
  4. [4] W.W. Seifert & V.C. Westcott, A method for the study ofwear particles in lubricated oil, Wear, 21, 1972, 27–42. doi:10.1016/0043-1648(72)90247-5
  5. [5] T.P. Sperring & B.J. Roylance, Some recent developments inthe use of quantitative procedures for performing wear debrisanalysis, JOAP Int. Condition Monitoring Conf., Mobile,Alabama, 2000, 205–210.
  6. [6] G.A. Khuwaja & M.S. Laghari, Computer vision techniquesfor wear debris analysis, International Journal of ComputerApplications in Technology, 15 (1–3), 2002, 70–78.286 doi:10.1504/IJCAT.2002.000282
  7. [7] J. Wang, D. Chen, & X. Kong, A web based remote intelligentexpert system for ferrography diagnosis, Key EngineeringMaterials, 245–246, 2003, 367–372.
  8. [8] M.X. Gong, S.F. Midkiff, & R.M. Buehrer, A self-organizedclustering algorithm for UWB ad hoc networks, IEEE WirelessCommunications and Networking Conference, 3, Atlanta, GA,2004, 1806–1811.
  9. [9] E. Daly, A. Gray, & M. Haahr, On using peer profiles tocreate self-organizing P2P networks, Sixth IEEE Int. Symp.on a World of Wireless Mobile and Multimedia Networks(WoWMoM), Toarmina, Italy, June 2005, 588–592. doi:10.1109/WOWMOM.2005.72
  10. [10] X.Z. Wang, Y. Miyanaga, & K. Tochinai, Agent oriented vectorquantization using self-organization realized in JAVA, Proc.1997 IEEE Int. Symp. on Circuits and Systems (ISCAS ’97),2, Hong Kong, June 1997, 1281–1284. doi:10.1109/ISCAS.1997.622074
  11. [11] H. Ryu, Y. Miyanaga, & K. Tochinai, Self-organized edgedetection for an image compression, IEEE Int. Symp. onCircuits and Systems, 4, Geneva, Switzerland, May 2000,625–628.
  12. [12] M.S. Laghari & A. Boujarwah, Wear particle identificationusing image processing techniques, ISCA 5th Int. Conf. onIntelligent Systems, Reno, Nevada, 1996, 26–30.
  13. [13] V. Krebs, Introduction to social network analysis, http://www.orgnet.com/sna.html.
  14. [14] Leica Cambridge Ltd., Leica Q500MC Qwin user manual(Buckinghamshire, UK: Leica Cambridge Ltd., 1994).
  15. [15] H. Xu, A.R. Luxmoore, & F. Deravi, Comparison of shapefeatures for the classification of wear particles, EngineeringApplications of Artificial Intelligence, 10 (5), 1997, 485–493. doi:10.1016/S0952-1976(97)00017-1
  16. [16] S. Raadnui, Wear particle characterization utilizing computerimage analysis, doctoral diss., University of Wales, Swansea,UK, 1996.
  17. [17] B.J. Roylance, Wear debris analysis for condition monitoring,INSIGHT, 36 (8), 1994, 606–610.
  18. [18] M.S. Laghari, Recognition of texture types of wear particles,International Journal of Neural Computing and Applications,12, 2003, 18–25. doi:10.1007/s00521-003-0367-y
  19. [19] D. Hammerstrom, Neural networks at work, IEEE Spectrum,June 1993, 26–32. doi:10.1109/6.214579
  20. [20] S. Przylucki, W. Wojcik, K. Plachecki, & T. Golec, Proc. ofSPIE Conf. on Optoelectronic and Electronic Sensors V, Vol.5124, Warsaw, Poland, September 2003, 325–332. doi:10.1117/12.517138
  21. [21] T. Otto, A. Meyer-Baese, M. Hurdal, D. Sumners, D. Auer, &A. Wismuller, Model-free functional MRI analysis using cluster-based methods, Proc. of SPIE Conf. on Intelligent Computing:Theory and Applications, Vol. 5103, Orlando, FL, August 2003,17–24. doi:10.1117/12.487254
  22. [22] I. Aleksander, H. Morton, An Introduction to Neural Computing(London: Chapman & Hall, 1991).
  23. [23] M. Smith & P. King, Incrementally visualizing criminal networks, Proc. Int. Conf. on Information Visualization, London,2002, 76–81. doi:10.1109/IV.2002.1028759

Important Links:

Go Back