Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
GUARANTEED COST CONTROL FOR UNCERTAIN DISCRETE-TIME DELAYED SYSTEMS: A DELAY-DEPENDENT APPROACH
L. Zhang, Y. Chen, and P. Cui
References
[1] H.H. Choi & M.J. Chung, An LMI approach to H∞ controller design for linear time-delay systems, Automatica, 33, 1997, 737–739.
doi:10.1016/S0005-1098(96)00242-7
[2] V. Kapila & W.M. Haddad, Memoryless H∞ controllers fordiscrete-time systems with time delay, Automatica, 34, 1998, 1141–1144.
doi:10.1016/S0005-1098(98)00054-5
[3] E.T. Jeung, D.C. Oh, J.H. Kim, & H.B. Park, Robust controller design for uncertain systems with time delays: LMI approach, Automatica, 32, 1996, 1229–1231.
doi:10.1016/0005-1098(96)00055-6
[4] M.S. Mahmoud & N.F. Al-Muthairi, Quadratic stabilization of continuous time systems with state delay and norm-bounded time-varying uncertainties, IEEE Trans. Automatic Control, 39, 1994, 2135–2139.
doi:10.1109/9.328812
[5] X. Li & C.E. de Souza, Delay-dependent robust stability and stabilization of uncertain time-delayed systems: A linear matrix inequality approach, IEEE Trans. Automatic Control, 42, 1997, 1144–1148.
doi:10.1109/9.618244
[6] E. Fridman & U. Shaked, A descriptor system approach to HN control of linear time-delay systems, IEEE Trans. Automatic Control, 47, 2002, 253–270.
doi:10.1109/9.983353
[7] E. Fridman & U. Shaked, An improved stabilization method for linear time-delay systems, IEEE Trans. Automatic Control, 47, 2002, 1931–1937.
doi:10.1109/TAC.2002.804462
[8] Y.S. Moon, P.G. Park, W.H. Kwon, & Y.S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of Control, 74, 2001, 1447–1455.
doi:10.1080/00207170110067116
[9] Y.S. Lee, Y.S. Moon, & W.H. Kwon, Delay-dependent guaranteed cost control for uncertain state-delayed systems, Proc. American Control Conf., Arlington, VI, 2001, 3376–3381.
[10] P. Park, A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Trans. Automatic Control, 44, 1999, 876–877.
doi:10.1109/9.754838
[11] K. Gu, V.L. Kharitonov, & J. Chen, Stability of time-delay systems (Berlin: Springer, 2003).
[12] K. Gu & S.I. Niculescu, Additional dynamics in transformed time delay systems, IEEE Trans. Automatic Control, 45, 2000, 572–575.
doi:10.1109/9.847747
[13] K. Gu & S.I. Niculescu,. Further remarks on additional dynamics in various model transformations of linear delay systems, IEEE Trans. Automatic Control, 46, 2001, 497–500.
doi:10.1109/9.911431
[14] W.-H. Chen, J.-X. Xu, & Z.-H. Guan, Guaranteed cost control for uncertain Markovian jump systems with mode-dependent delays, IEEE Trans. Automatic Control, 48, 2003, 2270–2277.
doi:10.1109/TAC.2003.820165
[15] W.-H. Chen, Z.-H. Guan, & X. Lu, Delay-dependent guaranteed cost control for uncertain discrete-time systems with delay, IEE Proc.—Control, Theory and Applications, 150, 2003, 412–416.
doi:10.1049/ip-cta:20030572
[16] Y. Wang, L. Xie, & C.E. de Souza, Robust control for a class of uncertain nonlinear systems, System Control Letters, 19, 1992, 139–149.
doi:10.1016/0167-6911(92)90097-C
[17] S. Boyd, L.E. Ghaoui, E. Feron, & V. Balakrishnan, Linear matrix inequalities in systems and control theory, in Studies in applied mathematics, Vol. 15 (Philadelphia, PA: SIAM, 1994).
Important Links:
Abstract
DOI:
10.2316/Journal.201.2007.3.201-1779
From Journal
(201) Mechatronic Systems and Control (formerly Control and Intelligent Systems) - 2007
Go Back