Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
DESIGN FOR HIGH DYNAMIC PERFORMANCE ROBOT BASED ON DYNAMICALLY COUPLED DRIVING AND JOINT STOPS
C. Xu, A. Ming, K. Mak, and M. Shimojo
References
[1] S.Y. Nof, Handbook of industrial robotics, Second Edition (New York: John Wiley & Sons, 1999), 60–61.
[2] C.M. Gosselin & J. Angeles, The optimum kinematic design of a planar three-degree-of-freedom parallel manipulators, Journal of Mechanisms, Transmissions, and Automation in Design, 110 (1), 1988, 35–41.
[3] J. Angeles & C.S. Lopez-Cajun, Kinematic isotropy and the conditioning index of serial type robotic manipulators, International Journal of Robotics Research, 11 (6), 1992, 560–571.
doi:10.1177/027836499201100605
[4] K.E. Zanganeh & J. Angeles, Kinematic isotropy and the optimum design of parallel manipulators, International Journal of Robotics Research, 16 (2), 1997, 185–197.
doi:10.1177/027836499701600205
[5] A. Fattah & A.M. Hasan Ghasemi, Isotropic design of spatial parallel manipulators, International Journal of Robotics Research, 21 (9), 2002, 811–824.
doi:10.1177/0278364902021009842
[6] C.A. Klein & T.A. Miklos, Spatial robotic isotropy, International Journal of Robotics Research, 10 (4), 1991, 426–437.
doi:10.1177/027836499101000410
[7] S.H. Lee, B.-J. Yi, & Y.K. Kwak, Optimal kinematic design of an anthropomorphic robot module with redundant actuators, International Journal of Mechatronics, 7 (5), 1997, 443–464.
doi:10.1016/S0957-4158(97)00011-1
[8] A. Sharon, N. Hogan, & D.E. Hardt, The macro/micro manipulator: an improved architecture for robot control, Journal of Robotics and Computer-Integrated Manufacturing, 10 (3), 1993, 209–222.
doi:10.1016/0736-5845(93)90056-P
[9] K. Koser, A slider crank mechanism based robot arm performance and dynamic analysis, Journal of Mechanism andMachine Theory, 39 (2), 2004, 169–182.
doi:10.1016/S0094-114X(03)00112-5
[10] S. Grahn & G. Johansson, Spring-assisted gantry robots versus conventional gantry robots: spring constant optimization and work minimization, Journal of Industrial Robot, 29 (1), 2002, 53–60.
doi:10.1108/01439910110410060
[11] J.H. Oh, D.G. Lee, & H.S. Kim, Composite robot end effector for manipulating large LCD glass panels, Journal of Composite Structure, 47 (1), 1999, 497–506.
doi:10.1016/S0263-8223(00)00013-1
[12] L.P. Chao, Optimal-design and sensitivity analysis of flexible robotic manipulators fabricated from advanced composite-materials, Journal of Thermoplastic Composite Materials, 8 (4), 1995, 346–364.
[13] J.H. Park & H. Asada, Concurrent design optimization of mechanical structure and control for high-speed robots, ASME Journal of Dynamic Systems, Measurement, and Control,116 (3), 1994, 344–356.
doi:10.1115/1.2899229
[14] A.C. Pil & H. Asada, Integrated structure/control design of mechatronic systems using a recursive experimental optimization method, IEEE/ASME Transactions on Mechatronics, 1 (3), 1996, 191–203.
doi:10.1109/3516.537042
[15] Y. Zhu, J.H. Qiu, & J. Tani, Simultaneous optimization of a flexible robot arm, JSME International Journal Series C – Mechanical Systems, Machine Elements and Manufacturing,43 (1), 2000, 32–37.
[16] Z.M. Bi & W.J. Zhang, Concurrent optimal design of modular robotic configuration, Journal of Robotic System, 18 (9), 2001, 77–87.
doi:10.1002/1097-4563(200102)18:2<77::AID-ROB1007>3.0.CO;2-A
[17] I.M. Fonseca, P.M. Bainum, & P.T.M. Lourencao, Structural and control optimization of a space structure subject to the gravity-gradient torque, Acta Astronautica, 51 (10), 2002, 673–681.
doi:10.1016/S0094-5765(02)00024-3
[18] K. Miller, Optimal design and modeling of spatial parallel manipulators, International Journal of Robotics Research, 23 (2), 2004, 127–140.
doi:10.1177/0278364904041322
[19] W. Schiehlen, Energy-optimal design of walking machines, Journal of Multibody System Dynamics, 13 (1), 2005, 129–141.
doi:10.1007/s11044-005-4068-4
[20] J. Lenarcic, Improvement of velocity and force capability of robot manipulators, Journal of Laboratory Robotics and Automation, 6 (6), 1994, 293–299.
[21] C.-Y.E. Wang, W.K. Timoszyk, & J.E. Brown, Payload maximization for open chained manipulators: finding weightlifting motions for a Puma760 robot, IEEE Transactions on Robotics and Automation, 17 (2), 2001, 218–224.
doi:10.1109/70.928569
[22] A. Ming, T. Mita, S. Dhlamini, & M. Kajitani, Motion control skill in human hyper dynamic motions – An investigation on the golf swing by simulation, Proc. IEEE Int. Symp. on Computational Intelligence in Robotics and Automation, Alberta, Canada, 2001, 47–52.
[23] A. Ming, M. Kajitani, & M. Shimojo, A proposal for utilizing structural joint stop in a manipulator, Proc. IEEE Int. Conf. on Robotics and Automation, Washington, WA, 2002, 3649–3654.
doi:10.1109/ROBOT.2002.1014276
[24] A. Ming, N. Harada, M. Shimojo, & M. Kajitani, Development of a hyper dynamic manipulator utilizing joint stops, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, 2003, 2084–2089.
[25] R.M. Murray, Z. Li, & S. Shankar Sastry, A mathematical introduction to robotic motion (Florida: CRC Press, 1994).
[26] R.P.C. Paul & B. Shimano, Compliance and control, Proc. Joint Automatic Control Conference, Purdue University, Lafayette, IN, 1976, 694–699.
[27] H. Hanafusa & H. Asada, Stable prehension by a robot hand with elastic fingers, Proc. 7th Int. Symp. on Industrial Robots, Tokyo, Japan, 1977, 361–368.
[28] J.K. Salisbury, Active stiffness control of a manipulator in cartesian coordinates, Proc. 19th IEEE Conf. on Decision and Control, Albuquerque, NM, 1980, 95–100.
[29] N. Hogan, Impedance control: An approach to manipulation, ASME Journal of Dynamics Systems, Measurement and Control, 107 (1), 1985, 1–24.
[30] K.F. Laurin-Kovitz, J.E. Colgate, & S.D.R. Carnes, Design of components for programmable passive impedance, Proc. IEEE Int. Conf. Robotics and Automation, Sacramento, CA, 1991, 1476–1481.
[31] K. Hyoudo & M. Wada, A study on tendon controlled wrist mechanism with nonlinear spring tensioner, Journal of the Robotics Society of Japan, 11 (8), 1993, 1244–1251.
[32] T. Morita, N. Tomita, T. Ueda, & S. Sugano, development of force-controlled robot arm using mechanical impedance adjuster, Journal of the Robotics Society of Japan, 16 (7), 1998, 1001–1006.
[33] T. Yamashita, K. Takeuchi, Y. Okuno, & S. Sagara, Control of stiffness and torque by antagonistically driven joint: experimental study using air actuated mechanism, Journal of the Robotics Society of Japan, 13 (5), 1995, 666–673.
[34] Y. Hayakawa, S. Kawamura, T. Goto, & K. Nagai, Development of a revolving drive mechanism for a robot manipulator by using pneumatic bellows actuators with force sensing ability, Journal of the Robotics Society of Japan, 14 (2), 1996, 271–278.
[35] W. Katusrashima, H. Kikuchi, K. Abe, & M. Uchiyama, Design and development of a robot arm with flexible joints, Proceedings of the RSJ Annual Conference, 1998, 963–964.
[36] I. Mizuuchi, T. Matsuki, S. Kagami, M. Inaba, & H. Inoue, An approach to a humanoid that has a variable flexible torso, Proceedings of the RSJ Annual Conference, 1998, 825–826.
[37] M. Okada, Y. Nakamura, & S. Ban, Design of programmable compliance for humanoid shoulder, Experimental Robotics, VII, 2001, 31–40.
[38] R.H. Bartels, J.C. Beatty, & B.A. Barsky, An introduction to splines for use in computer graphics and geometric modeling (San Mateo, CA: Morgan Kaufmann, 1987).
[39] C. Xu, A. Ming, T. Marumaya, & M. Shimojo, Motion generation for hyper dynamic manipulation, International Journal of Mechatronics, 17 (8), 2007, 405–416.
doi:10.1016/j.mechatronics.2007.05.002
Important Links:
Abstract
DOI:
10.2316/Journal.206.2007.4.206-2999
From Journal
(206) International Journal of Robotics and Automation - 2007
Go Back