INTELLIGENT CONTROL OF AIR TRAFFIC LANDING SEQUENCES

Q.A. Memon

References

  1. [1] H. Henry & H. Tim, Air traffic control and alert agent, Proceedings of the 4th International Conference on Autonomous Agents (Berlin: Springer-Verlag, 2000), 237–238.
  2. [2] J. Boesel, An air traffic simulation model that predicts and prevents excess demand, technical report published by The MITRE Corporation 2003 – The Centre for Advanced Aviation System Development (CAASD), McLean, VA, USA.
  3. [3] Karl Grundmann, Free flight: Air traffic control evolution or revolution, in Air Traffic Control Technologies II, Proc. SPIE, vol. 2737, 1996, 2–4. doi:10.1117/12.241053
  4. [4] J. Chen & R. Calzetta, Maximizing benefits of technology: A strategy for air traffic control requirements definition, in Air Traffic Control Technologies II, Proc. SPIE, vol. 2646, 1995, 20–25. doi:10.1117/12.211491
  5. [5] N. Fulton, Sensor-based situational awareness as a hazard paradigm for optimization of ATC systems design, in Air Traffic Control Technologies II, Proc. SPIE, vol. 2646, 1995, 126–137. doi:10.1117/12.211484
  6. [6] P.T.R. Wang, C.R. Wanke, & F.P. Wieland, Modelling time and space metering of flights in the national airspace system, Proc. Winter Simulation Conf., Washington, DC, 2004, 1299–1304.
  7. [7] B.P. Hogan & L.A. Wojcik, Traffic flow management modelling and operational complexity, Proc. Winter Simulation Conf., Washington, DC, 2004, 1305–1311.
  8. [8] K.C. Benson, D. Goldsman, & A.R. Pritchett, Applying statistical control techniques to air traffic simulations, Proc. Winter Simulation Conf., Washington, DC, 2004, 1330–1338.
  9. [9] C. Taoya, C. Deguang, & C. Peng, Data mining for air traffic flow forecasting: A hybrid model of neural network and statistical analysis, Proc. Intelligent Transportation Systems Conf., vol. 1, 2003, 211–215. doi:10.1109/ITSC.2003.1251950
  10. [10] C. Tran, A. Abraham, & L. Jain, A review of some main models for traffic flow forecasting, Proc. IEEE Intelligent Transportation Systems, vol. 1, 2003, 216–219.
  11. [11] J. Tzyy-Ping, S. Makeig, M. Stensmo, & T.J. Sejnowski, Estimating alertness from the EEG power spectrum, IEEE Trans. on Biomedical Engineering, 1997, 44 (1), 60–69.
  12. [12] A. Farinelli, L. Iocchi, & D. Nardi, Multirobot systems: A classification focused on coordination, IEEE Trans. on Systems, Man and Cybernetics, Part B, 34 (5), 2015–2028.
  13. [13] M. Daneva, Multitarget tracking in clutter: Two algorithms for data association, Proc. 2nd Int. IEEE Conf. on Intelligent Systems, vol. 3, 2004, 92–97.
  14. [14] K. Fregene, D.C. Kennedy, & D.W.L. Wang, Toward a systems- and control-oriented agent framework, IEEE Trans. on Systems, Man and Cybernetics, Part B, 35 (5), 2005, 999–1012. doi:10.1109/TSMCB.2005.848491
  15. [15] W. Fei-Yue, Agent-based control for networked traffic management systems, IEEE Intelligent Systems, 20 (5), 2005, 92–96. doi:10.1109/MIS.2005.80
  16. [16] H. Karniely & H.T. Siegelmann, Sensor registration using neural networks, IEEE Trans. on Aerospace and Electronic Systems, 36 (1), 2000, 85–101. doi:10.1109/7.826314
  17. [17] C. Tran, A. Abraham, & L. Jain, A concurrent fuzzy-neural network approach for decision support systems, IEEE Int. Conf. on Fuzzy Systems, vol. 2, 2003, 1092–1097.
  18. [18] B.N. Iordanova, Global neural network for automated air space-time allocation and control, IEEE Int. Conf. on Computational Intelligence for Homeland Security and Personal Safety, 2004, 72–79. doi:10.1109/CIHSPS.2004.1360211
  19. [19] B. Hilburn, Cognitive complexity in air traffic control: A literature review, http://www.eurocontrol.int/eec/public/standard_page/2004_note_04.html (technical report published on EUROCONTROL Experimental Centre website).
  20. [20] B. Zupna & A. Cheng, Response-time optimization of rule-based expert systems, Proc. SPIE, vol. 2244, March 1994, 240–248. doi:10.1117/12.169398
  21. [21] J. Nieten & R. Burke, System diagnostic builder: A rule-generation tool for expert systems that do intelligent data evaluation, Proc. SPIE, vol. 1963, March 1993, 31–38. doi:10.1117/12.141752
  22. [22] L. Gagnon & R. Klepko, Hierarchical classifier design for airborne SAR images of ships, Proc. SPIE, vol. 3371, September 1998, 38–49. doi:10.1117/12.323866
  23. [23] D. Hammerstrom, Neural networks at work, IEEE Spectrum, June 1993, 26–32. doi:10.1109/6.214579
  24. [24] L. Fausett, Fundamentals of neural networks: Architectures, algorithms and applications (New Jersey: Prentice Hall, 1994).
  25. [25] I. Aleksander & H. Morton, An introduction to neural computing (London: Chapman and Hall, 1990).
  26. [26] A.K. Rigler, J.M. Irvine, & T.P. Vogl, Rescaling of variables in back propagation learning, Neural Networks, 4 (2), 1991, 225–229. doi:10.1016/0893-6080(91)90006-Q
  27. [27] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, Artificial neural networks in hydrology, I: Preliminary concepts, Journal of Hydrologic Engineering, 5 (2), 2000, 115–123.
  28. [28] H.R. Maier & G.C. Dandy, Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications, Environmental Modelling and Software, 15, 2000, 101–124. doi:10.1016/S1364-8152(99)00007-9

Important Links:

Go Back