PHYSICAL MODELLING AND PARTICLE SWARM DESIGN OF COPLANAR WAVEGUIDE SQUARE SPIRAL INDUCTOR

N.I. Dib and J.I. Ababneh

References

  1. [1] E. Pettenpaul, H. Kapusta, A. Weisgerber, H. Mampe et al.,CAD models of lumped elements on GaAs up to 18 GHz, IEEETransactions on Microwave Theory and Techniques, 36(2),1988, 294–304. doi:10.1109/22.3518
  2. [2] R. Shimon, D. Scherrer, D. Caruth, I. Middleton et al., Accuratepassive component models in CPW for 50 GHz MMICs, 1997IEEE MTT-S Int. Microwave Symposium Digest, Vol. 2, 769–772. doi:10.1109/MWSYM.1997.602903
  3. [3] K. Beilenhoff, W. Heinrich, & H. Hartnagel, Analysis of MIMseries capacitances for coplanar MMICs, 8th Congr. MicrowavesOptron. Dig., Sindelfinger, Germany, 1995, 124–128.
  4. [4] T. Vaupel & V. Hansen, Electrodynamic analysis of combinedmicrostrip and coplanar/slotline structures with 3-d compo-nents based on a surface/volume integral-equation approach,IEEE Transactions on Microwave Theory and Techniques,47(9), 1999, 1788–1800. doi:10.1109/22.788514
  5. [5] Y. Shih, C. Pao, & T. Itoh, A broadband parameter extractiontechnique for the equivalent circuit of planar inductors, 1992IEEE MTT-S Int. Microwave Symposium Digest, Vol. 3, 1345–1348.
  6. [6] D. Krafcsik & D. Dawson, A closed-form expresion for rep-resenting the distributed nature of the spiral inductor, 1986IEEE MTT-S Int. Microwave Symposium Digest, 87–92.
  7. [7] Y. Koutsoyannopoulos & Y. Papananos, Systematic analysisand modelling of integrated inductors and transformers in RFIC design, IEEE Transactions on Circuits and Systems II,2000, 699–713. doi:10.1109/82.861403
  8. [8] Z. Hejazi, P. Excell, & Z. Jiang, Accurate distributed induc-tance of spiral resonators, IEEE Microwave and Guided WaveLetters, 8(4), 1998, 164–166. doi:10.1109/75.663521
  9. [9] Z. Jiang, P. Excell, & Z. Hejazi, Calculation of distributedcapacitances of spiral resonators, IEEE Transactions on Mi-crowave Theory and Techniques, 45(1), 1997, 139–142. doi:10.1109/22.552045
  10. [10] H. Greenhouse, Design of planar rectangular microelectronicinductors, IEEE Transactions on Parts, Hybrids, and Pack-aging, 1974, 101–109.
  11. [11] W. Tang & Y. Chow, Simple CAD formula for inductancecalculation of square spiral inductors with grounded substrateby duality and synthetic asymptote, Microwave and OpticalTechnology Letters, 34(2), 2002, 93–96. doi:10.1002/mop.10383
  12. [12] S. Leong, Design, optimization of RF spiral inductors us-ing scalable compact and accurate models, Analog IntegratedCircuits and Signal Processing, 37, 2003, 165–177. doi:10.1023/A:1026213607902
  13. [13] C. Yue & S. Wong, Physical modelling of spiral inductors onsilicon, IEEE Transactions on Electron Devices, 47(3), 2000,560–568. doi:10.1109/16.824729
  14. [14] P. Pogatzki, R. Kulke, T. Sporkmann, D. Kother, et al., Acomprehensive evaluation of quasi-static 3D-FD calculationsfor more than 14 CPW structures—lines, discontinuties andlumped elements, 1994 IEEE MTT-S Int. Microwave Sympo-sium Digest, Vol. 2, 1289–1292.
  15. [15] I. Huynen, Novel fast multiline analysis of parasitic effectsin CPW inductors for MMIC’s, IEEE Microwave and GuidedWave Letters, 8(2), 1998, 72–74. doi:10.1109/75.658645
  16. [16] M. Tuko, M. Naghed, & I. Wolff, Novel 18/36 GHz MMICGaAs FET frequency doublers in CPW techniques under theconsideration of the effects of coplanar discontinuities, IEEETransactions on Microwave Theory and Techniques, 41(8),1993, 1307–1315. doi:10.1109/22.241662
  17. [17] D. Budimir, I. Robertson, Q. Wang, & A. Rezazadeh, Designof coplanar waveguide multilayer square spiral inductors formonolithic microwave integrated circuits, International Journalof RF and Microwave Computer-Aided Engineering, 9(2), 1999,86–92. doi:10.1002/(SICI)1099-047X(199903)9:2<86::AID-MMCE3>3.0.CO;2-3
  18. [18] S. Mohan, M. del Mar Hershenson, S. Boyd, & T. Lee,Simple accurate expressions for planar spiral inductances, IEEEJournal of Solid-State Circuits, 34(10), 1999, 1419–1424.
  19. [19] S. Mohan, The design, modelling and optimization of on-chipinductor and transformer circuits, Ph.D. Dissertation, StanfordUniversity, 1999.
  20. [20] S. Kythakyapuzha, Modelling of spiral inductors and trans-formers, M.S. Thesis, Kansas State University, 2001.
  21. [21] HFSS Software, Ansoft Corporation, PA, USA.
  22. [22] R.C. Eberhart & J. Kennedy, A new optimizer using particleswarm theory, Proc. Sixth International Symposium on Micro-machine and Human Science, Nagoya, Japan, 1995, 39–43. doi:10.1109/MHS.1995.494215
  23. [23] J. Kennedy & R.C. Eberhart, Particle swarm optimization,Proc. IEEE International Conference on Neural Networks,Piscataway, NJ, 1995, 1942–1948.
  24. [24] J. Kennedy & R.C. Eberhart, A discrete binary version of theparticle swarm algorithm, Proc. IEEE International Conferenceon Systems, Man, and Cybernetics: Computational Cyberneticsand Simulation, Vol. 5, 1997, 4104–4108. doi:10.1109/ICSMC.1997.637339
  25. [25] J. Kennedy, R.C. Eberhart, & Y. Shi, Swarm intelligence (SanFrancisco: Morgan Kaufmann Publishers, 2001).
  26. [26] J. Kennedy & R. Mendes, Population structure and particleswarm performance, Proc. Congr. Evolutionary Computation(CEC 02), Vol. 2, 2002, 1671–1676. doi:10.1109/CEC.2002.1004493
  27. [27] J. Kennedy & J.M. Spears, Matching algorithms to problems:An experimental test of the particle swarm and some ge-netic algorithms on the multimodal problem generator, Proc.IEEE World Congr. Computational Intelligence EvolutionaryComputation, 1998, 78–83. doi:10.1109/ICEC.1998.699326
  28. [28] R.C. Eberhart & Y. Shi, Evolving artificial neural networks,Proc. Int. Conf. Neural Networks Brain, Beijing, P.R.C., 1998.
  29. [29] B. Brandstatter & U. Baumgartner, Particle swarmoptimization-mass-spring system analogon, IEEE Transactionson Magnetics, 38(2), 2002, 997–1000. doi:10.1109/20.996256
  30. [30] J. Robinson & Y. Rahmat-Samii, Particle swarm optimizationin electromagnetics, IEEE Transactions on Antennas andPropagation, 52(2), 2004, 397–402. doi:10.1109/TAP.2004.823969
  31. [31] I.C. Trelea, The particle swarm optimization algorithm: Con-vergence analysis and parameter selection, Information Pro-cessing Letters, 85, 2003, 317–325. doi:10.1016/S0020-0190(02)00447-7
  32. [32] M. Clerc & J. Kennedy, The particle swarm—explosion, sta-bility, and convergence in a multidimensional complex space,IEEE Transactions on Evolutionary Computation, 6(2), 2002,58–73.
  33. [33] A.I. El-Gallad, M.E. El-Hawary, A.A. Sallam, & A. Kalas,Enhancing the particle swarm optimizer via proper parametersselection, Canadian Conference on Electrical and ComputerEngineering, 2002, 792–797.
  34. [34] Y. Shi & R. Eberhart, A modified particle swarm optimizer,Proc. IEEE World Congr. Computational Intelligence Evolu-tionary Computation, 1998, 69–73. doi:10.1109/ICEC.1998.699146
  35. [35] Y. Shi & R. Eberhart, Empirical study of particle swarmoptimization, Proc. Congr. Evolutionary Computation (CEC99), Vol. 3, 1999, 1945–1950.
  36. [36] F. van den Bergh & A.P. Engelbrecht, Effects of swarm sizeon cooperative particle swarm optimizers, Proc. Genetic andEvolutionary Computation Conference 2001, San Francisco,USA, 2001.224

Important Links:

Go Back