A NEW APPROACH TO SYNTHESING RADIO FREQUENCY CHANNEL CHARACTERISTICS MODELS FOR TESTING OF WCDMA CELLULAR COMMUNICATION SYSTEM

Y.G. Eljaafreh∗ and K.A. Qaraqe∗∗

References

  1. [1] R. Ertel et al., Overview of spatial channel models for antennaarray comms. systems, IEEE Personal Communication, 5,1998, 10–22.
  2. [2] B. Fleury & P. Leuthold, Radiowave propagation in mobilecommunications: An overview of European research, IEEECommunication Magazine, 34, 1996, 70–81.
  3. [3] A. Neskovic, N. Neskovic, & D. Paunovic, Modern approachesin modeling of mobile radio systems propagation environment,IEEE Communication Magazine, 4 (6), June 2000.
  4. [4] H. Bertoni, Radio propagation for modern wireless systems,Ch. 1 (New Jersey: Prentice-Hall, 2000), 15 pp.
  5. [5] W.C. Jakes, Microwave mobile communication (New York:IEEE Press, 1993).
  6. [6] M. Correia, Wireless flexible personalized communications(New York: J. Wiley, 2001).
  7. [7] L. Gordon Stuber, Principles of mobile communication, SecondEdition (Sydney: Kluwer Academic Publishers, 2001).
  8. [8] W.Y. Lee, Mobile communication design fundamentals (JohnWiley, 1993).
  9. [9] Y. Okumura, E. Ohmori et al., Field strength and its variabilityin VHF and UHF land mobile radio services, Review ofElectrical Communication Laboratory, 16, 1968, 825–873.
  10. [10] K.V. Garg & J.E. Wilkes, Principles and applications of GSM(New Jersey: Prentice Hall, 1999).
  11. [11] M. Atzold, U. Killat, F. Laue, & Y. Li, On the statisticalproperties of deterministic simulation models for mobile fadingchannels, IEEE Transactions Vehicular Technology, 47, 1998,254–269.
  12. [12] J. Olmos, A. Gelonch, F. Casadevall, & G. Femenias, Designand implementation of a wide-band real-time mobile channelemulator, IEEE Transactions Vehicular Technology, 48, 1999,746–764.
  13. [13] J. Cavers, The mobile communication channels (Boston:Kluwer, 2000).
  14. [14] J. Anderson Rappaport & S.O. Yoshida, Propagation mea-surements and models for wireless communications channels,IEEE Communication Magazine, 1995, 42–49.254
  15. [15] D. Greenwood & L. Hanzo, Characterization of mobile radiochannel, mobile radio communications (London: Pentech Press,1994).
  16. [16] H. Wesolowshi, Mobile communication systems (New York:Wiley, 2002), 108.
  17. [17] L. Hanzo & J. Stefanov, The pan-European digital cellularmobile radio systems, in R. Steel (Ed.), Ch. 8 (London: PentechPress, 1992).
  18. [18] J. Proakis, Digital communications, Fourth Edition (New York:McGraw-Hill, 2001), 560 pp.
  19. [19] J. Kurzweil, An introduction to digital communications, Ch. 1(New York: J. Wiley, 2000).Appendix A: Channel Sampling RateTo adequately represent the Channel Impulse Responsefunction with a sequence of samples, the sampling ratemust be properly chosen. Further, it will be assumed thatpower spectrum of the Channel Impulse Response functionis negligible beyond the frequency of the maximum Dopplershift, which is a function of the mobile speed, that is:fd =vcfc (A1)wherev = Mobile speedc = Speed of lightfc = Carrier frequencyThus, for the channel impulse response, the Nyquist sam-pling period is:Ts,nyq =12fd=c2vfc(A2)However, it is convenient to combine the mobile speedand the sampling period using a sampling parameter (zeta),that defines the sampling quality as:ζ = vTs (A3)Clearly, smaller ζ indicates better sampling becauseit results from either slower speeds, which reduce themaximum Doppler frequency of the channel or from afaster sampling rate. The Nyquist sampling parameter isthus:ζnyq = vTs,nyq =c2fc= 0.15 (A4)For example at 1 GHz with ζ = 1/30 and ζ = 1/60, thecorresponding sampling rate requirements for a range ofmobile speeds are given in Table 1.Appendix B: PSC Acquire Sample OutputThe followings are the summary results for four PSCacquire searches performed on 10 s of (IQ) data. Thefirst search starts at the beginning of the (IQ) data, andsuccessive searches occur at 1.6 s intervals in the data.Table 1Channel Sampling Rate Versus Mobile Speedsv (km/h) Ts (ms)ζ = 1/60 ζ = 1/3010 6 1250 1.2 2.4120 0.5 1.0250 0.25 0.48Twelve peaks are presented for each acquire. Peaks aregrouped by PSC and sorted by energy (energy is given asCPICH Ec/Io in dB)........................................Processing file: IQ_001_ResAcq.txt.......................................PSC Energy E (dB) PN position171933 −22.06 36385.5739 −23.85 36286297934 −22.05 21065788 −23.33 20996.511113578 −8.43 130728103 −10.75 13071.52370 −16.61 13074.51759 −18.18 1307511316550 −7.55 13327.511750 −9.08 13327.59462 −10.05 13329.51090 −21.01 13332.......................................Processing file: IQ_002_ResAcq.txt.......................................PSC Energy E (dB) PN position378942 −21.99 13334.5788 −23.33 133611119084 −10.23 13071.58192 −10.70 13071.52556262 −11.93 13068.51733 −18.26 13068.511337007 −4.00 13324.534260 −4.34 13324.521347 −6.42 13324.51671 −18.46 13328.51080 −21.07 13327.5841 −22.82 13329.......................................Processing file: IQ_003_ResAcq.txt.......................................PSC Energy E (dB) PN position1116169 −12.00 130655032 −12.95 130652370 −16.61 130692161 −17.09 13069274965 −21.82 13704.5724 −24.03 1348211319105 −6.91 1332118400 −7.08 1332112114 −8.94 1332111640 −9.12 13323.55050 −12.93 133254069 −13.95 13323.5.......................................Processing file: IQ_004_ResAcq.txt.......................................PSC Energy E (dB) PN position2724116 −13.89 135741497 −19.08 135741396 −19.49 13578.51317 −19.83 135772648187 −10.70 13833.54903 −13.07 13833.51766 −18.16 138301319 −19.82 1383011319866 −6.74 13318724 −24.03 1348211319105 −6.91 1332118400 −7.08 1332112114 −8.94 1332111640 −9.12 13323.55050 −12.93 133254069 −13.95 13323.5

Important Links:

Go Back