BETTER GLOBAL POLYNOMIAL APPROXIMATION FOR IMAGE RECTIFICATION

C.O. Ward∗

References

  1. [1] C.O. Ward, Using polynomial approximation to rectify dis-torted images, Proc. IASTED MS2005, ACTA Press, 2005.
  2. [2] L.G. Brown, A survey of image registration techniques, ACMComputing Surveys, 24 (4), 1992, 325–376.
  3. [3] P.F. Whelan & D. Molloy, Machine vision algorithms in Java:techniques and implementation (Secaucus, NJ: Springer-VerlagLondon Limited, 2001).
  4. [4] I.E. Lagaris, A. Likas, & D.I. Fotiadis, Artificial neural networksfor solving ordinary and partial differential equations, IEEETrans. Neural Networks, 9, 1998, 987–995.
  5. [5] S. Ferrari & R.F. Stengel, Smooth function approximationusing neural networks, IEEE Trans. Neural Networks, 16, 2005.
  6. [6] E. Cheney, Introduction to approximation theory (McGaw-HillBook Company, 1966).
  7. [7] A. Pinkus, Density in approximation theory, http://www.math.technion.ac.il/sat.
  8. [8] G.E. Forsythe, M.A. Malcolm, & C.B. Moler, Computer meth-ods for mathematical computations (Prentice Hall ProfessionalTechnical Reference, 1977).
  9. [9] L.V. Fausett, Numerical methods: algorithms and applications(Pearson Education, Inc., 2003).
  10. [10] L. Ljung, System identification: theory for the user (PrenticeHall Information and System Sciences Series, 1999).

Important Links:

Go Back