MODELLING AND ANALYSIS OF NONLINEAR STIFFNESS, HYSTERESIS AND FRICTION IN HARMONIC DRIVE GEARS

R. Dhaouadi∗ and F.H. Ghorbel∗∗

References

  1. [1] N. Kircanski, A.A. Goldenberg, & S. Jia, An experimentalstudy of nonlinear stiffness, hysteresis and friction effects inrobot joints with harmonic drives and torque sensors, ThirdInternational Symposium on Experimental Robotics, Kyoto,1993, 147–154.
  2. [2] T. Tuttle & W. Seering, Modeling a harmonic drive geartransmission, Proc. 1993 International Conf. on Robotics andAutomation, 1993, 624–629.
  3. [3] G. Legnany & R. Faglia, Harmonic drive transmissions: theeffects of their elasticity, clearance and irregularity on thedynamic behavior of an actual SCARA robot, Robotica, 10(4),1992, 369–376.
  4. [4] T. Marilier & J.A. Richard, Nonlinear mechanic and electricbehavior of a robotic axis with a harmonic drive gear, Roboticsand Computer Integrated Manufacturing, 5(2–3), 1989, 129–136.
  5. [5] W. Seyfferth, A.J. Maghzal, & J. Angeles, Nonlinear modelingand parameter identification of harmonic drive robot transmis-sions, IEEE International Conf. on Robotics and Automation,1995, 3027–3032.
  6. [6] J.W. Macki, P. Nistri, & P. Zecca, Mathematical models forhysteresis, SIAM Review, 35(1), 1993, 94–123.
  7. [7] R. Bouc, Modele mathematique d’hysteresis, ACUSTICA,24(3), 1971, 16–25.
  8. [8] R. Dhaouadi & F. Ghorbel, A new dynamic model of hys-teresis in harmonic drives, IEEE Transactions on IndustrialElectronics, 50(6), 2003, 1165–1171.
  9. [9] M. Hodgdon, Application of a theory of ferromagnetic hystere-sis, IEEE Transactions on Magnetics, 24(1), 1988, 218–221.
  10. [10] M. Hodgdon, Mathematical theory and calculations of magnetichysteresis curves, IEEE Transactions on Magnetics, 24(6),1988, 3120–3122.
  11. [11] B.D. Coleman & M. Hodgdon, A constitutive relation forrate-independent hysteresis in ferromagnetically soft materials,International Journal of Engineering Science, 24(6), 1986,897–919.
  12. [12] B.D. Coleman & M. Hodgdon, On a class of constitutive relationfor ferromagnetic hysteresis, Archive for Rational Mechanicsand Analysis, 99(4), 1987, 375–396.
  13. [13] L.O. Chua & K.A. Stromsmoe, Lumped circuit models for non-linear inductors exhibiting hysteresis loops, IEEE Transactionson Circuit Theory, CT-17(4), 1970, 564–574.
  14. [14] L.O. Chua & K.A. Stromsmoe, Mathematical models fordynamic hysteresis loops, International Journal of EngineeringScience, 9, 1971, 435–450.
  15. [15] L.O. Chua & S.C. Bass, A generalized hysteresis model, IEEETransactions on Circuit Theory, CT-19(1), 1972, 36–48.
  16. [16] S. Hejny & F. Ghorbel, Harmonic drive test apparatus for dataacquisition and control, Internal Report ATP96-2, DynamicSystems and Control Laboratory, Rice University Departmentof Mechanical Engineering, May 1997.
  17. [17] dSPACE, Digital signal processing and control engineeringGmbH, DSP-CITeco LD31/LD31NET User’s Guide, 1993.

Important Links:

Go Back