A NEW ADAPTIVE NEURO-FUZZY CONTROLLER FOR TRAJECTORY TRACKING OF ROBOT MANIPULATORS

Dimitrios C. Theodoridis, Yiannis S. Boutalis, and Manolis A. Christodoulou

References

  1. [1] K. Hornik, M. Stinchcombe, & H. White, Multilayer feedfor-ward networks are universal approximators, Neural Networks,2, 1989, 359–366.
  2. [2] K. Passino & S. Yurkovich, Fuzzy control (Addison, 1998).
  3. [3] L. Wang, Adaptive fuzzy systems and control: Design andstability analysis (NJ: Prentice Hall, 1994).
  4. [4] D. Braganza, W.E. Dixon, D.M. Dawson, & B. Xian, Trackingcontrol for robot manipulators with kinematic and dynamicuncertainty, International Journal of Robotics and Automation,23 (8), 2008, 117–126.
  5. [5] J. Craig, Adaptive control of mechanical Manipulators (Read-ing, MA: Addison-Wesley, 1985).
  6. [6] M.I. EL-Hawwary & A.L. Elshafei, Robust adaptive fuzzycontrol of a two-link robot arm, International Journal ofRobotics and Automation, 21 (4), 2006, 266–272.
  7. [7] F.L. Lewis, C.T. Abdallah, & D.M. Dawson, Control of RobotManipulators (New York: Macmillan, 1993).
  8. [8] K. Najim, E. Ikonen, & E.G. Ramirez, Trajectory trackingcontrol based on a genealogical decision tree controller for robotmanipulators, International Journal of Innovative Computing,Information and Control, 4 (1), 2008, 53–62.
  9. [9] W. Yu & X. Li, Pd control of robot with velocity estimation anduncertainties compensation, International Journal of Roboticsand Automation, 21 (1), 2006, 1–9.
  10. [10] P. Dorato C.T. Abdallah, D. Dawson, & M. Jamshidi, Surveyof robust control for rigid robots, IEEE Control SystemsMagazine, 11, 1991, 24–30.
  11. [11] M.M. Fateh & A. Azarfar, Improving fuzzy control of robot ma-nipulators by increasing scaling factors, ICIC Express Letters,3 (3(A)), 2009, 513–518.
  12. [12] C.W. Lai, P.K. Chen, Y.N. Chung, & C.H. Hsu, Applyingadaptive estimator to maneuvering tracking system, ICICExpress Letters, 3 (3(A)), 2009, 427–432.
  13. [13] F. Lewis, S. Jaganathan, & A. Yesildirek, Neural NetworkControl of Robot Manipulators and Nonlinear Systems (Taylorand Francis, 1999).
  14. [14] B. Li, X. Yang, J. Zhao, & P. Yan, Minimum time trajec-tory generation for a novel robotic manipulator, InternationalJournal of Innovative Computing, Information and Control,5 (2), 2009, 369–378.
  15. [15] D.M. Dawson, M.M. Bridges, & C.T. Abdallah, Control of rigid-link flexible joint robots: A survey of backstepping approaches,Journal of Robotic Systems, 12 (3), 1995, 199–216.
  16. [16] K.-C. Chiou & S.-J. Huang, An adaptive fuzzy controller forrobot manipulators, Mechatronics, 15 (2), 2005, 151–177.
  17. [17] Y. Jin, Decentralized adaptive fuzzy control of robot manip-ulators, IEEE Transactions on SMCPART B, 28 (1), 1998,47–57.
  18. [18] F.L. Lewis, K. Liu, & A. Yesildirek, Neural net robot controllerwith guaranteed tracking performance, IEEE Transactions onNeural Networks, 6 (3), 1995, 703–715.
  19. [19] F.L. Lewis, A. Yesildirek, & K. Liu, Neural net robot controller:Structure and stability proofs, Journal of Intelligent andRobotic Systems, 12, 1995, 277–299.
  20. [20] F.L. Lewis, A. Yesildirek, & K. Liu, Multilayer neural net robotcontroller: Structure and stability proofs. IEEE Transactionson Neural Networks, 7 (2), 1996, 1–12.
  21. [21] Y.S. Boutalis, D.C. Theodoridis, & M.A. Christodoulou, A newneuro fds definition for indirect adaptive control of unknownnonlinear systems using a method of parameter hopping, IEEETransactions on Neural Networks, 20 (4), 2009, 609–625.
  22. [22] D.C. Theodoridis, Y.S. Boutalis, & M.A. Christodoulou, Di-rect adaptive control of unknown nonlinear systems using anew neuro-fuzzy method together with a novel approach ofparameter hopping, Kybernetica, 45 (3), 2009, 349–386.
  23. [23] D.C. Theodoridis, Y.S. Boutalis, & M.A. Christodoulou, Anew neuro-fuzzy dynamical system definition based on high or-der neural network function approximators, European ControlConference ECC-09, Budapest, Hungary, 2009.
  24. [24] S.L. Chui, Fuzzy model identification based on cluster estima-tion, Journal of Intelligent and Fuzzy Systems, 2, 1994.
  25. [25] J. Zhang & A.J. Morris, Recurrent neuro-fuzzy networks fornonlinear process modeling, IEEE Transactions on NeuralNetworks, 10 (2), 1999, 313–326.
  26. [26] S. Mitra & Y. Hayashi, Neuro-fuzzy rule generation: Surveyin soft computing framework, IEEE Transactions on NeuralNetworks, 11, 2000, 748–768.
  27. [27] M.W. Spong & M. Vidyasagar, Robot dynamics and control(New York: Wiley, 1989).
  28. [28] S. Arimoto & F. Miyazaki, Stability and robustness of pid feed-back control for robotics manipulators of sensory capabilities,1st Int. Symp. Robotics Research, 1984, 385–407.
  29. [29] P. Ioannou & B. Fidan, Adaptive control tutorial (SIAM, 2006).

Important Links:

Go Back