GENERATING NEAR-OPTIMAL REFERENCE TRAJECTORIES FOR SMALL FIXED-WING UAVs

Taha Chettibi

References

  1. [1] J.C. Latombe, Robot motion planning (Boston, MA: KluwerAcademic Publishers, 1991).
  2. [2] O.V. Stryk & R. Bulirsch, Direct and indirect methods fortrajectory optimization, Annals of Operations Research, 37,1992, 357–373.
  3. [3] V. Kumar, M. Zefran, & J. Ostrowski, Motion planning andcontrol of robots, in Handbook of industrial robotics (NewYork: John Wiley and Sons, 1997).
  4. [4] J.T. Betts, Survey of numerical methods for trajectory opti-mization, Journal of Guidance, Control and Dynamics, 21(2),1998, 193–207.
  5. [5] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,L.E. Kavraki, & S. Thrun, Principles of robot motion: Theory,algorithms, and implementations, First Edition (Cambridge,MA: MIT Press, Boston, 2005).
  6. [6] S.M. Lavalle, Motion planning algorithms (Cambridge Univer-sity Press, U.K., 2006).
  7. [7] O. Khatib, Real-time obstacle avoidance for manipulators andmobile robots, International Journal of Robotics Research,5(1), 1986, 90–98.
  8. [8] P.E. Hart, N.J. Nilsson, & B. Raphael, A formal basis forthe heuristic determination of minimum cost paths, IEEETransactions on Systems Science and Cybernetics, 4, 1968,100–107.
  9. [9] E. Dijkstra, A note on two problems in connexion with graphs,Numerische Mathematik, 1, 1959, 269–271.
  10. [10] E.P. Anderson, R.W. Beard, & T.W. McLain, Real-timedynamic trajectory smoothing for unmanned air vehicles, IEEETransactions on Control Systems Technology, 13, 2005, 471–477.
  11. [11] L.E. Dubins, On curves of minimal length with a constrainton average curvature, and with prescribed initial and terminalpositions and tangents, American Journal of Mathematics, 79,1957, 497–516.
  12. [12] M. Shanmugavel, A. Tsourdos, R. Zbikowski, & B.A. White,3D dubins sets based coordinated path planning for swarm ofUAVs, AIAA Guidance, Navigation, and Control Conferenceand Exhibit, Keystone, CO, AIAA 2006-6211, 2006.
  13. [13] G. Yang & V. Kapila, Optimal path planning for unmannedair vehicles with kinematic and tactical constraints, 41st IEEEConf. on Decision and Control, Las Vegas, NV, 2002, 1301–1306.
  14. [14] R.A. Larson, M. Pachter, & M.J. Mears, Path planning byunmanned air vehicles for engaging an integrated radar network,AIAA Guidance, Navigation, and Control Conference andExhibit, San Francisco, CA, AIAA 2005-6191, 2005.
  15. [15] K.B. Judd & T.W. McLain, Spline based path planning forunmanned air vehicles, AIAA Guidance, Navigation, andControl Conference and Exhibit, Montreal, AIAA 2001-4238,2001.
  16. [16] R. Zhu, D. Sun, & Z. Zhou, Integrated design of trajectoryplanning and control for micro air vehicles, Mechatronics, 17,2007, 245–253.
  17. [17] K.P. Bollino & L.R. Lewis, Collision-free multi-UAV optimalpath planning & cooperative control for tactical applications,AIAA Guidance, Navigation and Control Conference andExhibit, Hawaii, 2008.
  18. [18] C. Mou, Q.-X. Wu, & C.-S. Jiang, A modified ant optimizationalgorithm for path planning of UCAV, Applied Soft Computing,8, 2008, 1712–1718.
  19. [19] K. Yang & S. Sukkarieh, Real-time continuous curvature pathplanning of UAVs in cluttered environments, 5th InternationalSymposium on Mechatronics and its Applications, Jordan,2008.
  20. [20] F. Persiani, F. De Crescenzio, G. Miranda, & T. Bombardi,Three-dimensional obstacle avoidance strategies for uninhab-ited aerial systems mission planning and replanning, Journalof Aircraft, 46(3), 2009, 832–846.
  21. [21] D. Jung, Hierarchical path planning and control of a smallfixed-wing UAV: Theory & experimental validation, Ph.D.Thesis, School of Aerospace Engineering, Georgia Institute ofTechnology, 2007.
  22. [22] D. Rathbun, S. Kragelund, A. Pongpunwattana, & B. Capozzi,An evolution based path planning algorithm for autonomousmotion of a UAV through uncertain environments, 21st DigitalAvionics Systems Conf., 2, 2002, 8D2(1)–8D2(12).
  23. [23] D. Jia & J. Vagners, Parallel evolutionary algorithms forUAV path planning, AIAA 1st Intelligent Systems TechnicalConference, Chicago, IL, AIAA 2004-6230, 2004.
  24. [24] H. Duan, S. Liu, & J. Wu, Novel intelligent water dropsoptimization approach to single UCAV smooth trajectoryplanning, Aerospace Science and Technology, 13, 2009, 442–449.
  25. [25] H. Duan, Y. Yu, X. Zhang, & S. Shao, Three-dimensionpath planning for UCAV using hybrid meta-heuristic ACO-DEalgorithm, Simulation Modelling Practice and Theory, 18(8),2010, 1104–1115.
  26. [26] M.C. Steinbach, Fast recursive SQP methods for large scaleoptimal control problem, Ph.D. Thesis, University Heidelberg,Heidelberg, 1995.
  27. [27] O.V. Stryk, Numerical solution of optimal control problemsby direct collocation, in R. Bulirsch, A. Miele, J. Stoer, K.-H.Well (Eds.), Optimal Control – Calculus of Variations, OptimalControl Theory and Numerical Methods, International Seriesof Numerical Mathematics, 111 (Basel: Birkh¨auser, 1993)129–143.
  28. [28] A.E. Bryson, Dynamic optimization (Menlo Park, CA: AddisonWesley Longman, Inc., 1999).
  29. [29] P.F. Gath, CAMTOS – A software suite combining directand indirect trajectory optimization methods, Ph.D. Thesis,University of Stuttgart, Stuttgart, 2002.
  30. [30] J.T. Betts, A direct approach to solving optimal controlproblems, Computing in Science and Engineering, 1(3), 1999,72–75.
  31. [31] D.G. Hull, Conversion of optimal control problems into pa-rameter optimization problems, Journal of Guidance, Controland Dynamics, 20(1), 1997, 57–62.
  32. [32] B.R. Geiger, J.F. Horn, A.M. DeLullo, L.N. Long, & A.F.Niessner, Optimal path planning of uavs using direct collocationwith nonlinear programming, AIAA Guidance, Navigation,and Control Conference and Exhibit, Keystone, CO, AIAA2006-6199, 2006.
  33. [33] T. Schouwenaars, B.D. Moor, E. Feron, & J. How, Mixedinteger programming for multi-vehicle path planning, Proc. ofthe European Cont. Conf., Porto, 2001, 2603–2608.
  34. [34] T. Schouwenaars, M. Valenti, E. Feron, & J. How, Implemen-tation and flight test results of MILP-based UAV guidance,IEEE Conf. on Aerospace, Big Sky, MT, 2005, 1–13.
  35. [35] W.A. Kamal, D.-W. Gu, & I. Postlethwaite, Real time tra-jectory planning for UAVs using MILP, Proc. of 44th IEEEConf. on Decision & Control and the European Control Conf.,Seville, 2005, 12–15.
  36. [36] J. Fuller, D. Seto, & R. Meisner, Optimization-based controlfor flight vehicles, AIAA Guidance, Navigation, & ControlConf., Denver, CO, AIAA 2000-4055, 2000.
  37. [37] L. Singh & J. Fuller, Trajectory generation for a UAV in urbanterrain, using nonlinear MPC, Proc. of the American Cont.Conf., Arlington, VA, 2001, 2301–2308.
  38. [38] Y. Kuwata & J. How, Three dimensional receding horizoncontrol for UAVs, AIAA Guidance, Navigation and ControlConference and Exhibit, AIAA 2004-5144, Providence, RhodeIsland, Aug. 16–19, 2004.
  39. [39] E. Kim, Optimal helicopter trajectory planning for terrainfollowing flight, Ph.D. Thesis, Georgia Institute of Technology,Georgia, 1990.
  40. [40] P.K. Menon, E. Kim, & V.H.L. Cheng, Optimal trajectoryplanning for terrain following flight, Journal of Guidance,Control and Dynamics, 14(4), 1991, 807–813.
  41. [41] S. Twigg, A. Calise, & E. Johnson, On-line trajectory opti-mization including moving threats and targets, AIAA GNCConference, Providence, Rhode Island, Aug. 16–19, 2004.
  42. [42] S. Twigg, A. Calise, & E. Johnson, 3D trajectory optimizationfor terrain following and terrain masking, AIAA Guidance,Navigation and Control Conf. & Exhibit, Keystone, Co, 2006.
  43. [43] O. Yakimenko & I.L. Kamine, Near-optimal trajectory genera-tion for autonomous aircraft landing, IEEE International Sym-posium on Computer Aided Control System Design, Hawaii,USA, 1999.
  44. [44] O. Yakimenko, Direct method for rapid prototyping of near op-timal aircraft trajectories, AIAA Journal of Guidance, Control,and Dynamics, 23(5), 2000, 865–875.
  45. [45] I. Kaminer, O.A. Yakimenko, V.N. Dobrokhodov, M.I.Lizarraga, & A.M. Pascoal, Cooperative control of smallUAVssss for naval applications, 43rd IEEE Conf. on Decisionand Control, Atlantis, Bahamas, 2004.
  46. [46] I. Kaminer, O.A. Yakimenko, A. Pascoal, & R. Ghabcheloo,Path generation, path following and coordinated control fortime-critical missions of multiple UAVs, Proc. of AmericanControl Conf,. Minneapolis, USA, 2006.
  47. [47] M. Etchemendy, Flight control and optimal path planning forUAVs, M.Sc. Thesis, Cranfield University, UK, 2007.
  48. [48] K. Virtanen, H. Ehtamo, T. Raivio, & R.P. Hamalainen,VIATO-visual interactive aircraft trajectory optimization,IEEE Transactions on Systems, Men, and Cybernetics–Part C:Applications and Reviews, 29(3), 1999, 409–421.
  49. [49] J. Roskam, Dynamics and automatic flight controls, part I(DAR-Corporation, ISBN: 1884885179, 2001).
  50. [50] C. de Boor, A practical guide to splines (New York: Springer-Verlag, 1978).
  51. [51] C. de Boor, Spline toolbox for use with MATLAB (The MathWorks Inc., Natick, MA 01760-2098, 2005).
  52. [52] L.F. Shampine, R.C. Allen, Jr., & S. Pruess, Fundamentalsof numerical computing (New York: John Wiley & Sons Inc.,1996).
  53. [53] L. Piegl & W. Tiller, The NURBS book, Second Edition (Berlin:Springer, 1997).
  54. [54] A. Visioli, Trajectory planning of robot manipulators by usingalgebraic and trigonometric splines, Robotica, 18, 2000, 611–631.
  55. [55] W.J. Thompson, Computing for scientists and engineers (NewYork: John Wiley & Sons Inc., 1992).
  56. [56] M.J. Powell, Algorithm for non-linear constraints that useLagrangian functions, Mathematical programming, 14, 1984,224–248.
  57. [57] R. Fletcher, Practical methods of optimization, Second Edition(New York: Wiley Interscience Publication, 1987).
  58. [58] A. Barclay, P.E. Gill, & J.B. Rosen, SQP methods and theirapplication to numerical optimal control, Report NA97-3,Department of Mathematics, University of California, SanDiego, 1997.
  59. [59] J.T. Betts, Practical methods for optimal control using non-linear programming, Advances in Design and Control Societyfor Industrial and Applied Mathematics (SIAM), Philadelphia,PA, 2001.
  60. [60] E. Anderson, Extremal control and unmanned air vehicle trajec-tory generation, Master’s Thesis, Brigham Young University,Utah, 2002.
  61. [61] R.W. Beard, T.W. McLain, M.A. Goodrich, & E.P. Anderson,Coordinated target assignment and intercept for unmannedair vehicles, IEEE Transactions on Robotics & Automation,18(6), 2002, 911–922.
  62. [62] W. Ren & R.W. Beard, Trajectory tracking for unmannedair vehicles with velocity and heading rate constraints, IEEETransactions on Control Systems Technology, 12(5), 2004,706–716.
  63. [63] J.B. Saunders, B. Call, A. Curtis, R.W. Beard, & T.W.McLain, Static and dynamic obstacle avoidance in miniatureair vehicles, AIAA 2005-6950, Arlington, Virginia, 2005,infotech@aerospace.
  64. [64] W. Ren, Trajectory tracking control for a miniature fixed-wing unmanned air vehicle, International Journal of SystemsScience, 38(4), 2007, 361–368.
  65. [65] X.-N. Bui, J.-D. Boissonnat, P. Soueres, & J.-P. Laumond,Shortest path synthesis for Dubins non-holonomic robot, IEEEInternational Conference on Robotics and Automation, 1, 1994,2–7.
  66. [66] E. Magid, D. Keren, E. Rivlin, & I. Yavneh, Spline-based robotnavigation, IEEE/RSJ Int. Conf. on Intelligent Robotics &Systems, Beijing, China, 2006.
  67. [67] Y. Bouktir, M. Haddad, & T. Chettibi, Trajectory planning fora quadrotor helicopter, 16th Mediterranean Conf. on Controland Automation, Ajaccio, France, 2008.
  68. [68] Y. Bouktir, T. Saidouni, & T. Chettibi, Optimal trajectoryplanning for an autonomous helicopter, 24th Bristol Interna-tional UAV Conference, Bristol, UK, 2009.

Important Links:

Go Back