A COMPUTATIONALLY EFFICIENT APPROACH FOR TARGET TRACKING USING RECENT FINITE OBSERVATIONS

Pyung-Soo Kim

References

  1. [1] B.L. Mark & Z.R. Zaidi, Robust mobility tracking for cellularnetworks, in Proc. Int. Conf. Communications, 2002, 445–449.
  2. [2] I. Jami, R.F. Ormondroyd, & E. Artarit, Improved handsettracking using Kalman filter algorithm aided by angle-spreadinformation from a smart antenna array, in Proc. 58th IEEEVehicular Technology Conference, 2003, 752–756.
  3. [3] H. Lee, J.L. Welch, & N.H. Vaidya, Location tracking usingquorums in mobile ad hoc networks, Ad Hoc Networks, 1, 2003,371–381.
  4. [4] M.G.S. Bruno, Bayesian methods for multiaspect target track-ing in image sequences, IEEE Transactions on Signal Process-ing, 52 (7), 2004, 1848–1861.
  5. [5] Y. Bar-Shalom, K.C. Chang, & H.A.P. Blom, Tracking a ma-neuvering target using input estimation versus the interactingmultiple model algorithm, IEEE Transactions on AerospaceElectronics and System, 25, 1989, 296–300.
  6. [6] E. Daeipour & Y. Bar-Shalom, An interacting multiple modelapproach for target tracking with glint noise, IEEE Trans-actions on Aerospace Electronics and System, 31 (2), 1995,706–715.
  7. [7] E. Mazor, A. Averbuch, Y. Bar-Shalom, & J. Dayan, Interactingmultiple model methods in target tracking: a survey, IEEETransactions on Aerospace Electronics and System, 34 (1),1998, 103–123.
  8. [8] T. Kirubarajan & Y. Bar-Shalom, Kalman filter versus IMMestimator: when do we need the latter?, IEEE Transactionson Aerospace Electronics and System, 39 (4), 2003, 1452–1457.
  9. [9] R.J. Fitzgerald, Divergence of the Kalman filter, IEEE Trans-actions on Automatic Control, 16, 1971, 736–747.
  10. [10] A.M. Bruckstein & T. Kailath, Recursive limited memory filter-ing and scattering theory, IEEE Transactions on InformationTheory, 31, 1985, 440–443.
  11. [11] W.H. Kwon, P.S. Kim, & S.H. Han, A receding horizon unbiasedFIR filter for discrete-time state space models, Automatica,38 (3), 2002, 545–551.
  12. [12] H.S. Kim, P.S. Kim, & S.K. Lee, A delayed estimation filterusing finite observation on delay interval, IEICE Transactionson Fundamentals, E91-A(8), 2008, 2257–2262.
  13. [13] Y.S. Shmaliy, Unbiased FIR filtering of discrete time polyno-mial state space models, IEEE Transactions on Signal Pro-cessing, 57 (4), 2009, 1241–1249.
  14. [14] P.S. Kim, An alternative FIR filter for state estimation indiscrete-time systems, Digital Signal Processing, 20 (3), 2010,935–943.
  15. [15] P.S. Kim, Separate-bias estimation scheme with diverselybehaved biases, IEEE Transactions on Aerospace Electronicsand System, 38 (1), 2002, 333–339.
  16. [16] P.S. Kim & M.E. Lee, A new FIR filter for state estimation andits application, Journal of Computer Science and Technology,22 (5), 2007, 779–784.
  17. [17] Y.S. Shmaliy, GPS-based optimal FIR filtering of clock models(Nova Science Publishers Inc, 2010).
  18. [18] L. Pelkowitz & S.C. Schwartz, Asymptotically optimum samplesize for quickest detection, IEEE Transactions on AerospaceElectronincs and System, 23 (2), 1987, 263–272.96

Important Links:

Go Back