EFFICIENT FUZZY IDENTIFICATION METHOD FOR NONLINEAR SYSTEMS AND SIGNALS

Mouna Ghanai and Kheireddine Chafaa

References

  1. [1] K. Chafaa, M Ghanai, & K. Benmahammed, Fuzzy modellingusing Kalman filter, IET Control Theory and Applications,1(1), 2007, 58–64.
  2. [2] P.P. Angelov & D.P. Filev, An approach to online identificationof Takagi-Sugeno fuzzy models, IEEE Transactions on SystemsMan and Cybernetics, Part B, 34(1), 2004, 484–498.
  3. [3] K. Chafaa, L. Sa¨ıdi, M. Ghanai, & K. Benmahammed, Directadaptive type-2 fuzzy control for nonlinear systems, Interna-tional Journal of Computational Intelligence and Applications(IJCIA), Imperial College Press, 6(3), 2006, 389–411.
  4. [4] K. Chafaa, L. Sa¨ıdid, M. Ghanai, & K. Benmahammed, Indirectadaptive interval type-2 fuzzy control for nonlinear systems,International Journal of Modelling, Identification and Control,Inderscience, 2(2), 2007, 106–119.
  5. [5] T. Takagi & M. Sugeno, Fuzzy identification of systems andits applications to modelling and control, IEEE Transactionson System Man and Cybernetics, 15(1), 1985, 116–132.
  6. [6] M. Ghanai & K. Chafaa, Kalman filter in control and modelling,V. M. Morendo and Alberto Pigazo (Eds.), Kalman filter:recent advances and applications, 3 (Vienna, Austria: I-Tech,2009,) 71–86.
  7. [7] Y.-W. Huang & P.-C. Tung, Transient chattering SMC-Basedadaptive neural network control for SISO nonlinear systems,Control and Intelligent Systems, 38(2), 2010, 74–80.
  8. [8] L.X. Wang, Stable adaptive fuzzy control of nonlinear systems,IEEE Transactions on Fuzzy Systems, 1(2), 1993, 146–155.
  9. [9] PhysioNet, http://www.physionet.org/physiobank/database/nsrdb/

Important Links:

Go Back