APPLYING WAVE-VARIABLE-BASED SLIDING MODE IMPEDANCE CONTROL FOR ROBOT TELEOPERATION

Hsiu-Jen Liu and Kuu-Young Young

References

  1. [1] R.J. Anderson & M.W. Spong, Bilateral control of teleoperators with time delay, IEEE Transactions on Automatic Control, 34 (5), 1989, 494–501.
  2. [2] J. Yan & S.E. Salcudean, Teleoperation controller design using H∞-optimization with application to motion-scaling, IEEE Transactions on Control Systems Technology, 4 (3), 1996, 244–258.
  3. [3] G.M.H. Leung, B.A. Francis, & J. Apkarian, Bilateral controller for teleoperators with time delay via µ-synthesis, IEEE Transactions on Robotics and Automation, 11(1), 1995, 105–116.
  4. [4] H.C. Cho, J.H. Park, K. Kim, & J.O. Park, Sliding-modecontroller for bilateral teleoperation with varying time delay, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1999, 311–316.
  5. [5] C. Smith & H.Z. Keyvan, Neural network-baseed teleoperation using smith predictors, IEEE International Conference on Mechatronics and Automation, 2005, 1654–1659.
  6. [6] N. Xi, T.J. Tarn, & A.K. Bejczy, Intelligent planning and control for multirobot coordination: an event-based approach, IEEE Transactions on Robotics and Automation, 12(3), 1996, 439–452.
  7. [7] I.G. Polushin, P.X. Liu, & C.H. Lung, A control scheme for stable force-reflecting teleoperation over IP networks, IEEE Transactions on Systems, Man and Cybernetics Part B, 36 (4), 2006, 930–939.
  8. [8] I.G. Polushin, P.X. Liu, & C.H. Lung, A force reflection algorithm for improved transparency in bilateral teleoperation with communication delay, IEEE/ASME Transactions on Mechatronics, 12(3), 2007, 361–374.
  9. [9] I.G. Polushin, P.X. Liu, & C.H. Lung, Projection-based force reflection algorithm for stable bilateral teleoperation over networks, IEEE Transactions on Instrumentation and Measurement, 57 (9), 2008, 1854–1865.
  10. [10] G. Niemeyer & J.J.E. Slotine, Stable adaptive teleoperation, IEEE Journal of Oceanic Engineering, 16(1), 1991, 152–162.
  11. [11] Y. Ye & P.X. Liu, Improving haptic feedback fidelity in wave-variable-based teleoperation oriented to telemedical applications, IEEE Transactions on Instrumentation and Measurement, 58(8), 2009, 2847–2855.
  12. [12] R. Chipman, Transmission lines (NY: McGraw-Hill, 1968).
  13. [13] C.P. Kuan & K.Y. Young, Reinforcement learning and roust control for robot compliance tasks, Journal of Intelligent and Robotic Systems, 23(4), 1998, 165–182.
  14. [14] S. Mnuir & W.J. Book, Wave-based teleoperation with prediction, American Control Conference, 2001, 4605–4611.
  15. [15] T. Mirfakhrai & S. Payandeh, A delay prediction approach for teleoperation over the internet, IEEE Conference on Robotics and Automation, 2002, 2178–2183.
  16. [16] K. Kosuge, H. Murayama, & K. Takeo, Bilateral feedback control of telemanipulators via computer network, IEEE International Conference on Intelligent Robots and Systems, 1996, 1380–1385.
  17. [17] N. Chopra & M.W. Spong, Bilateral teleoperation over the internet: the time-varying delay problem, American Control Conference, 2003, 155–160.
  18. [18] C. Zhang, Y. Lee, & K.T. Chong, Passive teleoperation control with varying time delay, IEEE International Workshop on Advanced Motion Control, 2006, 23–28.
  19. [19] D. Lingfang & K. Khashayar, Wave variable sliding mode control for bilateral tele-operation systems using haptic interfaces, Chinese Control Conference, 2007, 58–62.
  20. [20] N. Hogan, Impedance control: an approach to manipulation, Part I – Theory; Part II – Implementation; Part III – Application, Journal of Dynamic Systems, Measurement, and Control, 107 (1), 1985, 1–24.

Important Links:

Go Back