A NOVEL APPROACH TO PATH PLANNING FOR AUTONOMOUS MOBILE ROBOTS

Yun-Qian Miao, Alaa M. Khamis, Fakhri Karray, and Mohamed S. Kamel

References

  1. [1] M. Strandberg, Robot path planning: an object-oriented ap-proach, PhD Thesis, Automatic Control Department of Signals,Sensors and Systems Royal Institute of Technology (KTH),Stockholm, Sweden, 2004.
  2. [2] A. Khoukhi, L. Baron, M. Balazinski, and K. Demirli, Hybridneuro-fuzzy multi-objective trajectory planning of redundantmanipulators, Control and Intelligent Systems, 37(2), 2009,87–96.
  3. [3] G. Capi and K. Mitobe, Humanoid robot motion planning – amultiple constrains approach, Control and Intelligent Systems,38(2), DOI: 10.2316/Journal.201.2010.2.201-2168, 2010.
  4. [4] J.C. Latombe, Robot motion planning (Boston, MA: KulwerAcademic publisher, 1991).
  5. [5] N.J. Nilsson, Problem solving methods in artificial intelligence(New York, USA: McGraw-Hill, 1971).
  6. [6] T. Lozano-Perez and M.A. Wesley, An algorithm for planningcollision-free paths among polyhedral obstacles, Communica-tions of the ACM, 22(10), 1979, 560–570.
  7. [7] S.M. LaValle, Rapidly-exploring random trees: a new toolfor path planning, Technical Report, No.98-11, Department ofComputer Science, Iowa State University, 1998.
  8. [8] R.A. Jarvis, Collision-free trajectory planning using distancetransforms, Proc. National Conference and Exhibition onRobotics, Melbourne, 1984, Mechanical Engineering Transac-tions, Journal of the Institution of Engineers, Vol.ME10, No.3,1985, 187–191.
  9. [9] S. LaValle, Planning algorithms (Cambridge, UK: CambridgeUniversity Press, 2006).
  10. [10] O. Khatib, Real-time obstacle avoidance for manipulators andmobile robots, The International Journal of Robotics Research,5(1), 1986, 90–98.
  11. [11] A. Abdennour, Multi-objective optimal tuning of power plantcontrols using genetic algorithms, Control and Intelligent Sys-tems, 32(2), 2004, 80–88.
  12. [12] Fakhreddine O. Karray and Clarence W. De Silva, Soft com-puting and intelligent systems design: theory, tools, and appli-cations (Boston, USA: Pearson/Addison Wesley, 2004).
  13. [13] C. Hsu and C. Yu, Robust control of interval plants usinggenetic algorithms, Control and Intelligent Systems, 35(2),2007, 140–148.
  14. [14] M. Gerke, Genetic path planning for mobile robots, Proc. ofthe American Control Conf. 4, 1999, 2424–2429.
  15. [15] K. Trojanowski, Z. Michalewicz, and J. Xiao, Adding memoryto the evolutionary planner/navigator, Proc. of the 4th IEEEICEC, 1997, 483–487.
  16. [16] A. Elshamli, H.A. Abdullah, and S. Areibi, Genetic algorithmfor dynamic path planning, Proc. of Canadian Conf. Elect. andComput. Eng., Niagara Falls, 2, May 2–5, 2004, 677–680.
  17. [17] Ismail AL-Taharwa, Alaa Sheta, and Mohammed Al-Weshah,A mobile robot path planning using genetic algorithm in staticenvironment, Journal of Computer Science, 4(4), 2008, 341–344.
  18. [18] D. Vrajitoru, P. Konnanur, and R. Mehler, Genetic algorithmsfor a single-track vehicle autonomous pilot, Control and Intel-ligent Systems, 36(1), 2008, 47–56.
  19. [19] J.R. Andrews and N. Hogan, Impedance control as a frameworkfor implementing obstacle avoidance in a manipulator, in D.E.Hardt and W. Book (Eds.) Control of manufacturing processesand robotic systems, (Boston: ASME, 1983), 243–251.
  20. [20] B.H. Krogh and C.E. Thorpe, Integrated path planning anddynamic steering control for autonomous vehicles, Proc. ofthe 1986 IEEE Int. Conf. on Robotics and Automation, SanFrancisco, California, April 7–10, 1986, 1664–1669.
  21. [21] Y. Koren and J. Borenstein, Potential field methods and theirinherent limitations for mobile robot navigation, Proc. of theIEEE Int. Conf. on Robotics and Automation, 2, 1991, 1398–1404.
  22. [22] Q. Zhu, Y. Yan, and Z. Xing, Robot path planning basedon artificial potential field approach with simulated annealing,Proc. of the Sixth Int. Conf. on Intelligent Systems Design andApplications (ISDA’06), Jinan, China, October 16–18, 2006.
  23. [23] P. Vadakkepat, K. Tan, and W. Ming-Liang, Evolutionaryartificial potential fields and their application in real time robotpath planning, Proc. of the 2000 Congress on EvolutionaryComputation, 1, 2000, 256–263.
  24. [24] K. HsiangWu, C. Chen, and J. Lee, Genetic-based adaptivefuzzy controller for robot path planning, fuzzy systems, 1996,Proc. of the Fifth IEEE Int. Conf. 3, 1996, 1687–1692.
  25. [25] E. Plumer, Neural network structure for navigation usingpotential fields, Proc. Int. Joint Conf. Neural Networks (IJCNN-92), 1, 1992, 327–332.

Important Links:

Go Back