Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
ASYMPTOTIC SWARM STABILITY OF HIGH-ORDER MULTI-AGENT SYSTEMS: CONDITION AND APPLICATION
Ning Cai, Jian-Xiang Xi, and Yi-Sheng Zhong
References
[1] N.A. Lynch, Distributed algorithms (San Mateo, CA: MorganKaufmann, 1997).
[2] R. Olfati-Saber & R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEETrans. Autom. Control, 49 (9), 2004, 1520–1533.
[3] W. Ren & R.W. Beard, Consensus seeking in multiagentsystems under dynamically changing interaction topologies,IEEE Transactions on Automatic Control, 50 (5), 2005, 655–661.
[4] L. Moreau, Stability of multiagent systems with time-dependentcommunication links, IEEE Transactions on Automatic Con-trol, 50 (3), 2005, 169–182.
[5] F. Xiao & L. Wang, Consensus problems for high-dimensionalmulti-agent systems, IET Control Theory and Applications,1 (3), 2007, 830–837.
[6] J. Wang, D. Cheng, & X. Hu, Consensus of multi-agent lineardynamic systems, Asian Journal Control, 10, 2008, 144–155.
[7] Z. Li, Z. Duan, & L. Huang, Consensus of multi-agent systemsand synchronization of complex networks: a unified viewpoint,IEEE Transactions on Circuit Systems-I, 57 (1), 2010, 213–224.
[8] N. Cai, J.-X. Xi, & Y.-S. Zhong, Swarm stability of high orderLTI swarm systems, IET Control Theory and Applications,5 (2), 2011, 402–408.
[9] N. Cai, J.-X. Xi, & Y.-S. Zhong, Necessary and sufficientconditions for asymptotic swarm stability of high order swarmsystems, Proc. IEEE Int. Conf. Control Autom., Xiamen,China, 2010, 1870–1875.
[10] J.-X. Xi, N. Cai, & Y.-S. Zhong, Consensus problems forhigh-order linear time-invariant swarm systems, Physica A,389 (24), 2010, 5619–5627.
[11] W. Ren, Consensus based formation control strategies formulti-vehicle systems, Proc. Am. Control Conf., Minneapolis,MN, USA, 2006.
[12] W. Ren & E.M. Atkins, Distributed multi-vehicle coordinatedcontrol via local information exchange, International Journalof Robust and Nonlinear Control, 17, 2007, 1002–1033.
[13] N. Chopra & M.W. Spong, Passivity-based control of multi-agent systems, in S. Kawamura & M. Svinin (Eds), Advances inrobot control: from everyday physics to human-like movements(Berlin: Springer-Verlag, 2006), 107–134.
[14] C. Godsil & G. Royle, Algebraic graph theory (New York:Springer, 2000).
[15] V. Gazi & K.M. Passino, Stability analysis of swarms, IEEETransactions on Automatic Control, 48 (4), 2003, 692–697.
[16] R.M. Zazworsky & H.K. Knudsen, Controllability and observ-ability of linear time-invariant compartmental models, IEEETransactions on Automatic Control, 23 (5), 1978, 872–877.
[17] S. Ma, S. Hackwood, & G. Beni, Multi-agent supporting sys-tems (MASS): control with centralized estimator of distur-bance, Proc. IEEE/RSJ/GI Int. Conf. Intelligent Robots andSystems, Munich, Germany, 1994, 679–686.
[18] K. Jin & M.M. Larrondo-Petrie, Partially asynchronous dis-tributed algorithms for 2-dimensional multi-agent supportingsystems, Proc. IEEE Int. Symp. Intelligent Control, 1996,236–241.
[19] F. Fahimi, S.V.S. Rineesh, & C. Nataraj, Formation controllersfor underactuated surface vessels and zero dynamics stability,Control and Intelligent Systems, 36 (3), 2008, 277–287.
[20] S.R. Ranatunga & S.P. Kumarawadu, Cooperatively controlledcollision evasive emergency manoeuvres, Control and IntelligentSystems, 36 (4), 2008, 330–339.
[21] M.-C. Pai, Robust tracking and model following of time-delaysystems, Control and Intelligent Systems, 37 (3), 2009, 135–143.
[22] M. Saffarian & F. Fahimi, A model predictive framework forautonomous 3D formation flight of helicopter groups, Controland Intelligent Systems, 37 (4), 2009, 220–226.
Important Links:
Abstract
DOI:
10.2316/Journal.201.2012.1.201-2314
From Journal
(201) Mechatronic Systems and Control (formerly Control and Intelligent Systems) - 2012
Go Back