AN IMPROVED WAVELET-BASED APPROACH FOR ESTIMATING THE VARIANCE OF NOISE IN IMAGES

Tianyi Li, Minghui Wang, and Zujian Huang

References

  1. [1] J. Immerkaer, Fast noise variance estimation,Computer Visionand Image Understanding, 64(2), 1996, 300–302.
  2. [2] K. Rank, M. Lendi, and R. Ubenhauer, Estimation of imagenoise variance,Computer Proceedings of Institute of ElectricalEngineering, Vision, Image, and Signal Processing, 146(2),1999, 80–84.
  3. [3] C. Shen and M. Shih, A fast method for image noise estimationusing laplacian operator and adaptive edge detection, 2008ISCCSP, 2008, 1077–1081.
  4. [4] A. Amer and E. Dubois, Fast and reliable structure-orientedvideo noise estimation, Computer IEEE Transactions on Cir-cuits and Systems for Video Technology, 15(1), 2005, 113–118.
  5. [5] R. Bracho and A.C. Sanderson, Segmentation of image based onintensity gradient information, Proc. Conf. Computer VisionPattern Recognition, San Francisco, CA, USA, 1985.
  6. [6] V. Zlokolica and W. Philips, Motion-detail adaptive k-nn filtervideo denoising, Proc. SPIE Electronic Imaging 5298-47, SanJose, CA, USA, 2004.
  7. [7] E.B. Gindele and N. Serrano, Estimating noise for a digitalimage utilizing updated statistics, US patent 7054501, 2006.
  8. [8] J-M. Jolion, P. Meer, and A. Rosenfeld, A fast parallel algorithmfor blind estimation of noise variance, IEEE Transactionson Pattern Analysis and Machine Intelligence, 12(2), 1990,216–223.
  9. [9] T. Li, M. Wang, and H. Chang, An entropy-based estimation ofnoise variance in wavelet domain, Journal of Beijing Universityof Posts and Telecommunications, 34(5), 2011, 1–5.
  10. [10] D. Donoho and I.M. Johnstone, Ideal spatial adaptation bywavelet shrinkage, Biometrika, 81, 1994, 425–455.
  11. [11] Q. Zhang, D. Liang, and X. Fan, Estimating image noisebased on region segmentation in the wavelet domain, ComputerEngineering, 30(8), 2004, 37–39.
  12. [12] T. Li, M. Wang, and T. Li, Estimating noise parameterbased on the wavelet coefficients estimation of original image,2332010 International Conference on Challenges in EnvironmentalScience and Computer Engineering, 1, 2010, 126–129.
  13. [13] S. Mallat, A wavelet tour of signal processing, 2nd ed. (Peking,China: Academic Press, 1998), 403–404.
  14. [14] M.K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin,Low complexity image denoising based on statistical modelingof wavelet coefficients, IEEE Signal Processing Letters, 6(12),1999, 300–303.
  15. [15] E.P. Simoncelli, Modeling the joint statistics of images in thewavelet domain, Proc. SPIE 44th Annu. Meeting, Denver, CO,1999, 188–195.
  16. [16] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, A jointinter- and intra-scale statistical model for Bayesian waveletbased image denoising, IEEE Transactions on Image Process-ing, 11(5), 2002, 545–557.
  17. [17] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli,Image denoising using scale mixtures of Gaussians in thewavelet domain, IEEE Transactions on Image Processing,12(11), 2003, 1338–1351.

Important Links:

Go Back