IMPROVEMENT OF RADON TRANSFORM-BASED PERCEPTUAL HASHING USING IMAGE NORMALIZATION

Kelsey A. Ramirez-Gutierrez, Mariko Nakano-Miyatake, and Hector M. Perez-Meana

References

  1. [1] F. Ahmed and M.Y. Siyal, A novel hashing scheme for imageauthentication, International Conference of Innovations inInformation Technology, 1, Dubai, 2006, 1–5.
  2. [2] I. Ismali, S. El-Zoghdy, and A. Abdo, A novel techinque for datahiding, International Journal of Computers and Applications,32 (1), 2010, 119–124.
  3. [3] C. Jin, Adaptive digital watermark system using soft compu-tation, International Journal of Computers and Applications,32 (3), 2010, 341–346.
  4. [4] I. Moskowitz, F. Ahmed, and P. Lafferty, Information the-oretic effects of JPEG compression on image steganography,International Journal of Computers and Applications, 32 (2),2010, 129–140.
  5. [5] H. Xiong, F. Li, and Z. Qin, Provably secure identity basedthreshold signature without random oracles, InternationalJournal of Computers and Applications, 31 (4), 2009, 268–273.
  6. [6] A. Manoharan and A. Krishnan, Power analysis of multiplehashing bloom filter architecture, International Journal ofComputers and Applications, 33 (4), 2011, 316–322.
  7. [7] A. Swaminathan, Y. Mao, and M. Wu, Robust and secureimage hashing, IEEE Transactions on Information Forensicsand Security, 1 (June), 2006, 215–230.
  8. [8] V. Monga and B.L. Evans, Perceptual image hashing viafeature points: Performance evaluation and trade-offs, IEEETransactions on Image Processing, 15 (November), 2006, 3453–3466.
  9. [9] D. Wu, X. Zhou, and X. Niu, A novel image hash algorithmresistant to print-scan, Signal Processing, 89, 2009, 2415–2424.
  10. [10] J.S. Seo, J. Haitsma, T. Kalker, and C.D. Yoo, A robustimage fingerprinting system using the Radon transform, SignalProcessing: Image Communication, 19, 2004, 325–339.
  11. [11] M.K. Myhcak and R. Venkatesan, New iterative geometrictechniques for robust perceptual image hashing, Lecture Notesin Computer Science, 2320, 2002, 13–21.
  12. [12] V. Monga and M.K. Myhcak, Robust and secure image hashingvia non-negative matrix factorization, IEEE Transactions onInformation Forensics and Security, 2 (3), 2007, 376–390.
  13. [13] L. Gerold and U. Andreas, Key dependent JPEG2000 basedrobust hashing for secure image authentication, EURASIPJournal on Information Security, 8, 2008, 1–18.
  14. [14] R. Venkatesan, S. Kong, M. Jakubowski, and P. Moulin, Robustimage hashing, Proc. of Int. Conf. on Image Processing, 3,Vancouver, Canada, 2000, 664–666.
  15. [15] F. Khelifi and J. Jiang, Perceptual image hashing based onvirtual watermark detection, IEEE Transactions on ImageProcessing, 19 (4), 2010, 981–994.
  16. [16] Y. Li, Z. Lu, C. Zhu, and X. Niu, Robust image hashingbased on random gabor filtering and dithered lattice vectorquantization, IEEE Transactions on Image Processing, 99,2011, 1–14.
  17. [17] B. Chen and V. Chandran, Robust image hashing using higherorder spectral features, International Conference on DigitalImage Computing: Techniques and Applications, Sydney,Australia, 2010.
  18. [18] L. Weng and B. Preneel, Shape-based features for imagehashing, IEEE International Conference on Multimedia andExpo, New York, USA, 2009.
  19. [19] Y. Ou and K.H. Rhee, A key-dependent secure image hashingscheme by using Radon transform, International Symposiumon Intelligent Signal Processing and Communication Systems,Kanazawa, Japan, 2009.
  20. [20] D.Q. Nguyen, L. Weng, and B. Preneel, Radon transform-basedsecure image hashing, CMS’11 Proceedings of the 12th IFIPTC 6/TC 11 International Conference on Communicationsand Multimedia Security, Springer-Verlag Berlin, Heidelberg,2011, 186–193.
  21. [21] A. Averbuch, R. Coifman, D. Donoho, and M. Israeli, Fast slantstack: A notion of Radon transform for data in a cartesian gridwhich is rapidly computible, algebraically exact, geometricallyfaithful and invertible, SIAM Journal on Scientific Computing,2001.
  22. [22] Y. Liu and J. Zhao, A new video watermarking algorithmbased on 1ddft and Radon transform, Signal Processing, 90,2010, 626–639.
  23. [23] G. Chen, T.D. Bui, and A. Krzyzak, Invariant pattern recog-nition using Radon, dual-tree complex wavelet and fouriertransforms, Pattern Recognition, 42, 2009, 2013–2019.
  24. [24] M. Miciak, Radon transformation and principal componentanalysis method applied in postal address recognition task,International Journal of Computer Science and Applications,7 (3), 2010, 33–44.
  25. [25] G.R. Easly and F. Colonna, Generalized discrete Radon trans-forms and applications to image processing, Advances in Imag-ing and Electron Physics, 51, 2008, 169–239.
  26. [26] S.R. Deans, The Radon Transform and some of its applications(New York, USA: Dover Publications, 2007).
  27. [27] S.-C. Pei and C.-N. Lin, Image normalization for patternrecognition, Image and Vision Computing, 13 (10), 1995,711–723.
  28. [28] Y. Avrithis, Y. Xirouhakis, and S. Kollias, Affine-invariantcurve normalization for object shape representation, classifi-cation and retrieval, Machine Vision and Applications, 13 (2),2001, 80–94.
  29. [29] M. Alghoniemy and A.H. Tewfik, Geometric invariance inimage watermarking, IEEE Transactions on Image Processing,13 (2), 2004, 145–153.
  30. [30] Affine-resistant watermarking, www.cmlab.csie.ntu.edu.tw/ipr/mmsec2008/data/lecture/Lecture13 (accessed date: July8, 2012), 2008.
  31. [31] K. Ramirez-Gutierrez, M. Nakano-Miyatake, and H. Perez-Meana, Improvement of Radon-based image hashing usingimage normalization, Electronics, Robotics and AutomotiveMechanics Conference, Cuernavaca, Mexico, 2011, 173–177.
  32. [32] P. Dong, J.G. Brankov, N.P. Galatsanos, Y. Yang, andF. Davoine, Digital watermarking robust to geometric distor-tions, IEEE Transactions on Image Processing, 14 (December),2005, 2140–2150.
  33. [33] M.-K. Hu, Visual pattern recognition by moment invariants,IRE Transactions on Information Theory, 49 (September),1961, 1428.

Important Links:

Go Back