AN INTERACTIVE CONTROL ARCHITECTURE FOR MOBILE ROBOTS

Chia-How Lin and Kai-Tai Song

References

  1. [1] R. Murphy, The Hierarchical Paradigm, Introduction to AIRobotics, (Cambridge, MA: MIT Press, 2000)
  2. [2] R.C. Arkin, E.M. Riseman, and A.H. Aura, An architecture for vision-based robot navigation, Proc. DARPA Image Understanding Workshop, Los Angeles, CA, February 1987, 417–431.
  3. [3] E. Gat, Three-layer architectures, D. Kortenkamp, R.P. Bonasso, and R. Murphy (eds.), Artificial intelligence and mobile robots (Cambridge, MA: MIT Press, 1998).
  4. [4] D. Lyons and A. Hendriks, Planning as incremental adaptation of a reactive system, Robotics and Autonomous System, 14(4), 1995, 255–288.
  5. [5] N. Bensaid and P. Mathieu, A hybrid architecture for hierarchical agents, Proc. Int. Conf. on Computational Intelligence and Multimedia Applications (ICCIMA), Griffith University, Gold-Coast, Australia, February 1997, 91–95.
  6. [6] K. Konolige, K.L. Myers, E.H. Ruspini, and A. Saffiotti, The Saphira architecture: A design for autonomy, Journal of Experimental and Theoretical Artificial Intelligence, 9(1), 1997, 215–235.
  7. [7] G. Brzykcy, J. Martinek, A. Meissner, and P. Skrzypczynski, Control aspects of the blackboard agent architecture for a mobile robot, Control and Cybernetics, 32(4), 2003, 851–866.
  8. [8] M.C. Neves and E. Oliveira, ARCoS – An autonomous mobile robot control system, Proc. Int. Symp. on Engineering of Intelligent Systems, Tenerife, Spain, February 1998, 220–227.
  9. [9] T. Huntsberger, P. Pirjanian, A. Trebi-Ollennu, H. Das Nayar, H. Aghazarian, A.J. Ganino, M. Garrett, S.S. Joshi, and P.S. Schenker, CAMPOUT: A control architecture for tightly coupled coordination for multi-robot systems for planetary surface exploration, IEEE Transactions on Systems, Man, and Cybernetics Part A, 33(5), 2003, 550–558.
  10. [10] C. Coté, D. Létourneau, F. Michaud, J.M. Valin, et al., Code reusability tools for programming mobile robots, Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Sendai, Japan, October 2004, 1820–1825.
  11. [11] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, et al., The CLARAty architecture for robotic autonomy, Proc. 2001 IEEE Aerospace Conference, Big Sky, Montana, March 2001, 215–235.
  12. [12] H. Bruyninck, P. Soetens, and B. Koninck, The real-time motion control core of the Orocos project, Proc. 2003 IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan, September 14–19, 2003, 2766–2771.
  13. [13] H. Bruyninckx, Orocos (open robot control software), http://www.orocos.org.
  14. [14] T.H.J. Collett, B.A. MacDonald, and B.P. Gerkey, Player 2.0: Toward a practical robot programming framework, Proc. Australasian Conf. on Robotics and Automation, Sydney, Australia, December 2005, 267–289.
  15. [15] M. Quigley, K. Conley, B. Gerkey, J. Faus et al., ROS: An open-source robot operating system, Open-Source Software Workshop at the International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 2009.
  16. [16] S. Morgan, Programming Microsoft Robotics Studio (Redmond, WA: Microsoft Press, 2008).
  17. [17] F.G. McCabe, April: An agent programming language for the internet, Proc. Symp. on Industrial Applications of Prolog, Hino, Tokyo, Japan, October 1996, 25–34.
  18. [18] J. Soler, V. Julian, C. Carrascosa, and V. Botti, Applying the ARTIS agent architecture to mobile robot control, Proc. Ibero-American Conference on Artificial Intelligence, Atibaia, Sao Paulo, Brasil, 2000, 359–368.
  19. [19] V. Julian and V. Botti, Developing real-time multi-agent systems, Integrated Computer-Aided Engineering, 11(2), 2004, 135–149.
  20. [20] M. Lindstrom, A. Oreback, and H.I. Christensen, BERRA: A research architecture for servicer, Proc. IEEE Conf. on Robotics and Automation, San Francisco, CA, 2000, 3278–3283.
  21. [21] F. Meshkati, H.V. Poor, S.C. Schwartz, and R.V. Balan, Energy-efficient resource allocation in wireless networks with quality-of-service constraints, IEEE Transactions on Communications, 57(11), 2009, 3406–3414.
  22. [22] C.H. Lin and K.T. Song, Flexible real-time control of home robots using a multi-agent based approach, Proc. 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Sendai, Japan, 2004, 3092–3097.
  23. [23] C.H. Lin, K.T. Song, and G.T. Anderson, Agent-based robot control design for multi-robot cooperation, Proc. 2005 of IEEE Int. Conf. on Systems, Man and Cybernetics, Big Island, Taiwan, 2005, 542–547.
  24. [24] C.H. Lin, C.H. Yang, C.K. Wang, K.T. Song, and J.S. Hu, A new design on multi-modal robotic focus attention, Proc. 17th IEEE International Symposium on Robot and Human Interactive Communication, Munich, Germany, 1–3 August 2008, 598–603.
  25. [25] F.H. Martini and E.F. Bartholomew, Essentials of anatomy and physiology (Upper Saddle River, NJ: Prentice Hall, 2000).
  26. [26] J. Ueda, L. Odhner, and H.H. Asada, Broadcast feedback of stochastic cellular actuators inspired by biological muscle control, The International Journal of Robotics Research, 25(11–12), 2007, 1251–1265.
  27. [27] RTAI – Official website, https://www.rtai.org/.
  28. [28] W.P. Chen and K.T. Song, Using multiple ultrasonic sensors for home robot environment exploration, Proc. 2003 ROC Automatic Control Conference, Chungli, Taiwan, 13–14 March 2003, 1319–1324.
  29. [29] K.T. Song and J.Y. Lin, Behavior fusion of robot navigation using a fuzzy neural network, Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, Taipei, Taiwan, 2006, 4910–4915.
  30. [30] http://isci.cn.nctu.edu.tw/Video/agent2010/1/
  31. [31] K.T. Song, J.S. Hu, C.Y. Tsai, C.M. Chou, C.C. Cheng, W.H. Liu, and C.H. Yang, Speaker attention system for mobile robots using microphone array and face tracking, Proc. IEEE Int. Conf. on Robotics and Automation, Orlando, FL, 2006, 3624–3629.
  32. [32] http://isci.cn.nctu.edu.tw/Video/agent2010/2/

Important Links:

Go Back