Jiandong Zhong and Jianbo Su
[1] P. Bhattacharya and M.L. Gavrilova, Roadmap-based path planning – using the voronoi diagram for a clearance-based shortest path, IEEE Robotics and Automation Magazine, 15(2), 2008, 58–66. [2] E. Plaku, K.E. Bekris, B.Y. Chen, A.M. Ladd, and L.E. Kavraki, Sampling-based roadmap of trees for parallel motion planning, IEEE Transactions on Robotics, 21(4), 2005, 597–608. [3] E. Simonin and J. Diard, BBPRM: a behavior-based probabilistic roadmap method, Proc. IEEE Int. Conf. Syst. Man Cyber., 2008, 1719–1724. [4] R. Geraerts and M.H. Overmars, Creating high-quality roadmaps for motion planning in virtual environments, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2006, 4355–4361. [5] M. Morales, S. Rodriguez, and N. Amato, Improving the connectivity of PRM roadmaps, Proc. IEEE Int. Conf. Robot. Autom., 2003, 4427–4432. [6] S. Chakravorty and S. Kumar, Generalized sampling-based motion planners, IEEE Transactions on Systems, Man, and Cybernetics-Part B, 41(3), 2011, 855–866. [7] S.M. LaValle, Planning algorithms (Cambridge: Cambridge University Press, 2006). [8] S.M. La alle, Motion planning,IEEE Robotics and Automation Magazine, 18(1), 2011, 79–89. [9] B. Raveh, A. Enosh, and D. Halperin, A little more, a lot better: improving path quality by a path-merging algorithm, IEEE Transactions on Robotics, 27(2), 2011, 365–371. [10] J.B. Su and W.L. Xie, Motion planning and coordination for robot systems based on representation space, IEEE Transactions on Systems, Man, and Cybernetics-Part B, 41(1), 2011, 248–259. [11] L. Lulu and A. Elnagar, A comparative study between visibility-based roadmap path planning algorithms, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2005, 3263–3268. [12] D. Hsu, J.C. Latombe, and R. Motwani, Path planning in expansive configuration spaces, Proc. IEEE Int. Conf. Robot. Autom., 1997, 2719–2726. [13] C. Nissoux, T. Sim´eon, and J.P. Laumond, Visibility-based probabilistic roadmaps, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 1999, 1316–1321. [14] M. Saha and J.C. Latombe, Finding narrow passages with probabilistic roadmaps: the small-step retraction method, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2005, 622–627. [15] D. Nieuwenhuisen, A.F. van der Stappen, and M.H. Overmars, Pushing a disk using compliance, IEEE Transactions on Robotics, 23(3), 2007, 431–442. [16] V. Boor, M.H. Overmars, and A.F. van der Stappen, The Gaussian sampling strategy for probabilistic roadmap planners, Proc. IEEE Int. Conf. Robot. Autom., 1999, 1018–1023. [17] Y.T. Lin, The Gaussian PRM sampling for dynamic configuration spaces, Proc. 9th Int. Conf. Contr. Autom. Robot. Vision, 2006, 1–5. [18] D. Hsu, T. Jiang, J. Reif, and Z. Sun, The bridge test for sampling narrow passages with probabilistic roadmap planners, Proc. IEEE Int. Conf. Robot. Autom., 2003, 4420–4426. [19] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J.H. Reif, Narrow passage sampling for probabilistic roadmap planning, IEEE Transactions on Robotics, 21(6), 2005, 1105–1115. [20] S. Quinlan, Efficient distance computation between non-convex objects, Proc. IEEE Int. Conf. Robot. Autom., 1994, 3324–3330. [21] S. Gottschalk, M. Lin, and D. Manocha, OBBTree: a hierarchical structure for rapid interference detection, Proc. 23rd Annu. Conf. Comput. Graph. Interact. Tech., 1996, 171–180. [22] J. Cortes, M. Lin, D. Manocha, and M. Ponamgi, I-Collide: an interactive and exact collision detection system for large scale environments, Proc. Conf. ACM Symp. Interact. 3D Graph., 1995, 189–196. [23] S.M. LaValle, Rapidly-exploring random trees: a new tool for path planning (Computer Science Department, Iowa State University, 1998), . [24] W. Wang and Y. Li, A multi-RRTs framework for robot path planning in high-dimensional configuration space with narrow passages, Proc. IEEE Int. Conf. Mechatron. Autom., 2009, 4952–4957. [25] L. Jaillet, J. Cortes, and T. Simeon, Sampling-based path planning on configuration-space costmaps, IEEE Transactions on Robotics, 26(4), 2010, 635–646. [26] D. Hsu, G. Sanchez-Ante, and Z. Sun, Hybrid PRM sampling with a cost-sensitive adaptive strategy, Proc. IEEE Int. Conf. Robot. Autom., 2005, 3885–3891.
Important Links:
Go Back