ROBUST ACTUATOR FORCE ANALYSIS OF A HEAVY-DUTY MANIPULATOR USING GMM/GMR

Miao Li, Xiaoping Zhang, and Wenyu Yang

References

  1. [1] Ch. Borst, M. Fischer, and G. Hirzinger, A fast and robust grasp planner for arbitrary 3D objects, IEEE Int. Conf. on Robotics and Automation, Detroit, Michigan, USA, May 10–15, 1999, 1890–1896.
  2. [2] K.Y. Goldberg, M.T. Mason, and A. Requicha, Geometric uncertainty in motion planning: summary report and bibliography, Catalina Island, CA, June 15–17, 1992.
  3. [3] M. Erdmann, Using backprojections for fine motion planning with uncertainty, The International Journal of Robotics Research, 5(1), 1986, 19–45.
  4. [4] G.M. Bone and Y. Du, Multi-metric comparison of optimal 2D grasp planning algorithms, IEEE International Conference on Robotics and Automation, 3(2), Seoul, Korea, May 21–26, 2001, 3061–3066.
  5. [5] A. Bicchi, Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity, IEEE Transactions on Robotics and Automation, 16(6), 2000, 652–662.
  6. [6] J. Kerr and B. Roth, Analysis of multifingered hands, The International Journal of Robotics Research, 4, 1986, 3–17.
  7. [7] M. Buss, H. Hashimoto, and J. Moore, Dextrous hand grasping force optimization, IEEE Transactions on Robotics and Automation, 12(3), 1996, 406–418.
  8. [8] S. Boyd and L. Vandenberghe, Convex optimization (New York, NY: Cambridge University Press, 2004).
  9. [9] Yu Zheng and Wen-Han Qian, Coping with the grasping uncertainties in force-closure analysis, The International Journal of Robotics Research, 24(4), 2005, 311–327.
  10. [10] J. Xiao and L. Zhang, Towards obtaining all possible contacts – growing a polyhedron by its location uncertainty, IEEE Transactions on Robotics and Automation, 12(4), 1996, 553–565.
  11. [11] R.Y. Rubinstein and D.P. Kroese, Simulation and the Monte Carlo method (Hoboken, New Jersey: Wiley Series in Probability and Statistics, 2007).
  12. [12] D. Cohn, Z. Ghahramani, and M. Jordan, Active learning with statistical models, Journal of Artificial Intelligence Research, 4, 1996, 129–145.
  13. [13] S. Calinon, Robot programming by demonstration: a probabilistic approach (Lausanne: EPFL/CRC Press, 2009).
  14. [14] R. Cutkosky, Robotic grasping and fine manipulation (Boston, MA: Kluwer Press, 1985).
  15. [15] R.M. Murray, Z. Li, and S.S. Sastry, A mathematical introduction to robotic manipulation (Boca Raton, Florida: CRC Press, 1994).
  16. [16] L. Han, Jeff C. Trinkle, and L. Zexiang, Grasp analysis as matrix inequality problems, IEEE Transactions on Robotics and Automation, 16(6), 2000, 663–674.
  17. [17] B. Mishra, Grasp metrics: optimality and complexity, in K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson (eds.), Algorithmic foundations of robotics (Wellesley, MA: A.K. Peters Ltd., 1995), 137–166.
  18. [18] K.L. Johnson, Contact mechanics (New York, NY: Cambridge University Press, 1985).
  19. [19] M. Vukobratovic and B. Borovac, Zero-moment point – thirty five years of its life, International Journal of Humanoid Robotics, 1(1), 2004, 157–173.
  20. [20] D.A. Wismer and R. Chattergy, Introduction to nonlinear optimization – a problem solving approach (New York, NY: Elsevier North-Holland, Inc., 1978), 63–79.
  21. [21] Wenyu Yang, Miao Li, and Xiaoping Zhang, Robust robotic grasping force optimization with uncertainty,Int. Conf. on Intelligent Robotics and Applications, Shanghai, China, November 10–12, 2010, 264–275.
  22. [22] C.M. Bishop, Pattern recognition and machine learning (New York, NY, Springer-Verlag, 2006).
  23. [23] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone programming, Linear Algebra and its Applications, 284, 1998, 193–228.

Important Links:

Go Back