Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
CLASSIFICATION AND IDENTIFICATION OF POWER SYSTEM EVENTS USING HILBERT HUANG TRANSFORM
Mario Ortiz, Sergio Valero, Antonio Gabaldón, and Carlos Álvarez
References
[1] S. Santoso, E.J. Powers, and W.M. Grady, Power quality disturbance data compression using wavelet transform methods, IEEE Transactions on Power Delivery, 12(3), 1997, 1250–1255.
[2] M. Ortiz, S. Valero, and A. Gabaldón, Transient power and quality events analysed using Hilbert transforms, Journal of Energy and Power Engineering, 6(2), 2012, 230–239.
[3] D.R. Ostojic and G.T. Heydt, Transient stability assessment by pattern recognition in the frequency domain, IEEE Transactions on Power Systems, 6(1), 1991, 231–237.
[4] G.T. Heydt, P.S. Field, C.C. Liu, D. Pierce, et al., Applications of the windowed FFT to electric power quality assessment, IEEE Transactions on Power Delivery, 14(4), 1999, 1411–1416.
[5] F.H. Magnano and A. Abur, Fault location using wavelets, IEEE Transactions on Power Delivery, 13(4), 1998, 1475–1478.
[6] S. Santoso, E.J. Powers, W.M. Grady, and P. Hofmann, Power quality assessment via wavelet transform analysis, IEEE Transactions on Power Delivery, 11(2), 1996, 924–930.
[7] G.T. Heydt and A.W. Galli, Transient power quality problems analyzed using wavelets, IEEE Transactions on Power Delivery, 12(2), 1997, 908–915.
[8] P. Pillay and A. Bhattacharjee, Application of wavelets to model short-term power system disturbances, IEEE Transactions on Power Systems, 4(11), 1996, 2031–2040.
[9] I.W.C. Lee and P.K. Dash, S-transform-based intelligent system for classification of power quality disturbance signals, IEEE Transactions on Industrial Electronics, 50(4), 2003, 800–805.
[10] A.M. Gargoom, N. Ertugrul, and W.L. Soong, Investigation of effective automatic recognition systems of power-quality events, IEEE Transactions on Power Delivery, 22(4), 2007, 2319–2326.
[11] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Procedures of the Royal Society of London, 454(1971), 1998, 903–995.
[12] D.S. Laila, A.R. Messina, and B.C. Pal, A refined Hilbert–Huang transform with applications to interarea oscillation monitoring, IEEE Transactions on Power Systems, 24(2), 2009, 610–620.
[13] T.J. Browne, V. Vittal, G.T. Heydt, and A.R. Messina, A comparative assessment of two techniques for modal identification from power system measurements, IEEE Transactions on Power Systems, 23(3), 2008, 1408–1415.
[14] N. Senroy, S. Suryanarayanan, and P.F. Ribeiro, An improved Hilbert–Huang method for analysis of time-varying waveforms in power quality, IEEE Transactions on Power Systems, 22(4), 2007, 1843–1850.
[15] M.H.J. Bollen, E. Styvaktakis, and I.Y. Gu, Categorization and analysis of power system transients, IEEE Transactions on Power Delivery, 20(3), 2005, 2298–2306.
[16] S.L. Hahn, Hilbert transforms in signal processing (Norwood, Maryland: Artech House, 1996).
[17] S. Kizhner, T.P. Flatley, N.E. Huang, K. Blank, and K.E. Conwell, On the Hilbert–Huang transform data processing system development, IEEE Aerospace Conference Proceedings, 3, 2004, 1961–1975.
[18] N.E. Huang and S.S.P. Shen, Hilbert–Huang transform and its applications (World Scientific Publishing Company, 2005).
[19] G. Rilling, P. Flandrin, and P. Gonçalvès, On empirical mode decomposition and its algorithms, Proc. IEEE-EURASIP Workshop on Nonlinear Signal Image Process, Grado, Italy, 2003.
[20] R. Deering and J.F. Kaiser, The use of a masking signal to improve empirical mode decomposition, Proc. IEEE Int. Conf. Acoustic, Speech, and Signal Processing, 4, 2005, 485–488.
[21] http://perso.ens-lyon.fr/patrick.flandrin/emd.html, (2007) release.
[22] T. Kohonen, Self-organisation and associative memory, 3rd ed. (Springer-Verlag, 1989).
[23] S.V. Verdu, M.O. Garcia, C. Senabre, A.G. Marin, and F.J.G. Franco, Classification, filtering, and identification of electrical customer load patterns through the use of self-organizing maps, IEEE Transactions on Power Systems, 21(4), 2006, 1672–1682.
[24] IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Std., 1159-2009.
Important Links:
Abstract
DOI:
10.2316/Journal.203.2013.3.203-5063
From Journal
(203) International Journal of Power and Energy Systems - 2013
Go Back