OPTIMIZATION OF PRINCIPAL COMPONENT ANALYSIS AND SUPPORT VECTOR MACHINE FOR THE RECOGNITION OF INFANT CRY WITH ASPHYXIA

Rohilah Sahak, Wahidah Mansor, Khuan Y. Lee, Azlee Zabidi, and Ahmad I.M. Yassin

References

  1. [1] G. Varallyay Jr., Future prospects of the application of theinfant cry in the medicine, Periodica Polytechnica Ser. El.Eng., 50(1–2), 2006, 47–62.
  2. [2] M. Petroni, A.S. Malowany, C.C. Johnston, and B.J. Stevens,Classification of infant cry vocalizations using artificial neuralnetworks, International Conference on Acoustics, Speech andSignal Processings, 5, 1995, 3475–3478.
  3. [3] K. Manicknam and H. Li, Complexity analysis of normaland deaf infant cry acoustic waves, Proc. 4th Int. Workshopon Model and Analysis of Vocal Emission for BiomedicalApplications (MAVEBA), Florence, 2005, 102–108.
  4. [4] A. Ismaelli, G. Rapisardi, G.P. Donzelli, M. Moroni, andP. Bruscaglioni, A new device for computerized infant cryanalysis in the NICU, Proc. 16th Annual Int. Conf. of theIEEE, 1994, 854–855.
  5. [5] M. Laberge, Infancy through adolescence gale (FarmingtonHills, MI: Gale Group, Thomson Gale, 2006).
  6. [6] D. Lederman, Automatic classification of infants’ cry, M.Sc.degree, Ben-Gurion University of the Negev, October 2002.
  7. [7] O. Wasz-Hockert, T. Partanen, V. Vuorenkoski, E. Valanne,and K. Michelsson, Effect of training on ability to identifypreverbal vocalizations, Developmental Medicine and ChildNeurology, 6, 1964, 4.
  8. [8] O. Wasz-Hockert, T. Partanen, V. Vuorenkoski, E. Valanne,and K. Michelsson, The identification of some specific meaningsin infant vocalization, Experientia, 20, 1964, 154–156.
  9. [9] V.R. Fischelle and S. Karelitz, The cry latencies of normalinfants and those with brain damage, in C.F.Z. Boukydis andB.M. Lester (eds.), Infant crying (New York: Plenum Press,1985), 1–28.
  10. [10] P.F. Ostwald, D.G. Feedman, and J.H. Kurtz, Vocalizationsof infant twins, Folia Phoniatrica, 14, 1962, 37.
  11. [11] K. Michelsson and O. Michelsson, Phonation in the newborn,infant cry, International Journal of Pediatric Otorhinolaryn-gology, 49(1), 1999, S297–S301.
  12. [12] O.F. Reyes-Galaviz and C.A. Reyes-Garcia, A system for theprocessing of infant cry to recognize pathologies in recently bornbabies with neural networks, 9th Conf. Speech and Computer(SPECOM), Saint-Petersburg, Russia, 2004, 6.
  13. [13] J. Orozco and C.A. Reyes-Garcia, Detecting pathologies frominfant cry applying scaled conjugate gradient neural networks,Proc. ESANN, 2003, 249–354.
  14. [14] S. Zhou, L. Wu, X. Yuan, and W. Tan, Parameters selection ofSVM for function approximation based on differential evolution,Int. Conf. on Intelligent Systems and Knowledge Engineering(ISKE), 2007, 7.
  15. [15] V. Vapnik, An overview of statistical learning theory, IEEETransactions on Neural Networks, 5, 1999, 988–999.
  16. [16] W.C. Chan, K.C. Cheung, and C.J. Harris, On the modellingon nonlinear dynamic system using support vector neuralnetworks, Engineering Applications of Artificial Intelligence,14, 2001, 105–113.
  17. [17] G.Q. Zhu, S.R. Liu, and J.S. Yu, Support vector machine andits applications to function approximation, Journal of EastChina University of Science and Technology, 5, 2002, 555–559.
  18. [18] T.S. Furey, Support vector machine classification and validationof cancer tissue samples using microarray expression data,Journal of Bioinformatics, 16(10), 2000, 906–914.
  19. [19] S. Hongzong and W. Tao, Support vector machines classifi-cation for discriminating coronary heart disease patients fromnon-coronary heart disease, West Indian Medical Journal,56(5), 2007, 451–457.
  20. [20] J. Kan, W. Li, and K. Gao, Use of support vector machinesin recognition of fork branches of the standing trees, 2ndIEEE Conf. on Industrial Electronics and Applications, 2007,783–786.
  21. [21] O. Ivanciuc, Chapter 6: Applications of support vector machinesin chemistry, Computational chemistry, 23, (Hoboken, NJ,USA: Wiley-VCH, John Wiley & Sons, Inc., 2007).
  22. [22] M. Schmidt and H. Gish, Speaker identification via support vec-tor classifiers, International Conference on Acoustics, Speechand Signal Processing, ICASSP, 1, 1996, 105–108.
  23. [23] M.-H. Yang and B. Moghaddam, Gender classification usingsupport vector machines, International Conference on ImageProcessing, 2, 2000, 471–474.
  24. [24] J.Z. Shah and N. Salim, Neural networks and support vectormachines based bio-activity classification, 1st Int. Conf. onNatural Resources Engineering and Technology, 2006, 484–491.
  25. [25] C.A. Reyes-Garcia and S.E. Barajas-Montiel, Identifying painand hunger in infant cry with classifiers ensembles, Int.Conf. on Computational Intelligence for Modelling, Controland Automation and International Conference on IntelligentAgents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05), 2005, 6.
  26. [26] Md. R. Hasan, M. Jamil, Md. G. Rabbani, and Md. S. Rahman,Speaker identification using Mel frequency cepstral coefficients,3rd Int. Conf. on Electrical and Computer Engineering ICECE2004, Dhaka, Bangladesh, 28–30 December 2004, 4.
  27. [27] J.Deller Jr., J. Hansen, and J. Proakis, Discrete-time processingof speech signals, 2nd ed. (New York, NY: IEEE Press, 2000).
  28. [28] F. Soong, E. Rosenberg, B. Juang, and L. Rabiner, A vectorquantization approach to speaker recognition, AT&T TechnicalJournal, 66, 1987, 14–26.
  29. [29] R. Sahak, W. Mansor, L.Y. Khuan, A. Zabidi, and F.Y.A.Rahman, An investigation into infant cry and Apgar scoreusing principal component analysis, 5th Signal Processing andIts Application Colloqium, 2008, 209–214.
  30. [30] Principal Component Analysis, unpublished note, http://www.support.sas.com/publishing/pubcat/chap5/55129.pdf.
  31. [31] S. Haykin, Neural networks: A comprehensive foundation, 2nded. (Canada: Pearson Education Asia, 1999).
  32. [32] W.J. Wang, Z.B. Xu, and W.Z. Lu, Determination of thespread parameter in the gaussian kernel for classification andregression, Neurocomputing, 55, 2003, 643–663.
  33. [33] Bertsekas, Dynamic programming and optimal control, Vols. Iand II (Belmont, MA: Athenas Scientific, 1995).
  34. [34] T. Zhou, J. Weng, X. Sun, and Z. Lu, Support vector ma-chines for classification of meiotic recombination hotspots andcoldspots in Saccharomyces Cerevisiae based on codon com-position, BMC Bioinformatics, 7(223), 2006, 8.
  35. [35] O.F. Reyes-Garcia (Online database), http://ingenieria.uatx.mx/∼orionfrg/cry/ (accessed Jul. 30, 2009).106

Important Links:

Go Back