Longsheng Wang, Hongze Xu and Hengyu Luo
[1] P.G. Howlett, I.P. Milroy, and P.J. Pudney, Energy-efficienttrain control, Control Engineering Practice, 2(2), 1994, 193–200. [2] E. Khmelnitsky, On an optimal control problem of trainoperation, IEEE Transactions on Automatic Control, 45(7),2000, 1257–1266. [3] S. Yasunobu, S. Miyamoto, and H. Ihara, A fuzzy control fortrain automatic stop control, Transactions of the Society ofInstrument and Control Engineers, E-2 (1), 2002, 1–9. [4] H. Sun, Z.-S. Hou, and D. Li, Coordinated iterative learningcontrol schemes for train trajectory tracking with overspeedprotection, IEEE Transactions on Automation Science andEngineering, 10(2), 2013, 323–333. [5] C.-D. Yang and Y.-P. Sun, Mixed H2/H∞ cruise controllerdesign for high speed train, International Journal of Control,74(9), 2001, 905–920. [6] M. Chou and X. Xia, Optimal cruise control of heavy-haultrains equipped with electronically controlled pneumatic brakesystems, Control Engineering Practice, 15(5), 2007, 511–519. [7] X. Zhuan and X. Xia, Optimal scheduling and control ofheavy haul trains equipped with electronically controlled pneu-matic braking systems, IEEE Transactions on Control SystemTechnology, 15(6), 2007, 1159–1166. [8] Q. Song, Y.-D. Song, T. Tang, and B. Ning, Computation-ally inexpensive tracking control of high-speed trains withtraction/braking saturation, IEEE Transactions on IntelligentTransportation Systems, 12(4), 2011, 1116–1125. [9] S. Gao, H. Dong, Y. Chen, B. Ning, and G. Chen, Adaptive androbust automatic train control systems with input saturation,Control and Intelligent Systems, 41 (2), 2013, 103–111. [10] P.A. Ioannou and J. Sun, Robust adaptive control (EnglewoodCliffs, NJ: Prentice Hall, 1996). [11] K. Tsakalis and P. Ioannou, Adaptive control of linear time-varying plants, Automatica, 23(4), 1987, 459–468. [12] B. Fidan, Y. Zhang, and P.A. Ioannou, Adaptive controlof a class of slowly time varying systems with modelinguncertainties, IEEE Transactions on Automatic Control, 50(6),2005, 915–920. [13] K.S. Tsakalis, Model reference adaptive control of linear time-varying plants: the case of ‘jump’ parameter variations, Inter-national Journal of Control, 56(6), 1992, 1299–1345. [14] W. Wang and C. Wen, Adaptive compensation for infinitenumber of actuator failures or faults, Automatic, 47(10), 2011,2197–2210. [15] W. Lohmilier and J.-J.E. Slotine, On contraction analysis fornon-linear systems, Automatica, 34(6), 1998, 683–696. [16] J. Jouffroy and J.-J.E. Slotine, Methodological remarks oncontraction theory, in Proc. of 43rd IEEE Conf. on Decision andControl, Atlantis, Paradise Island, Bahamas, vol. 3, Dec. 14–17,2004, 2537–2543. [17] J.A. Scheta, Aerodynamics of high-speed trains, Annual Reviewof Fluid Mechanics, 33(1), 2001, 371–414. [18] S.A. Bernsteen, R.A. Uher, and J.P. Romualdi, The interpre-tation of train rolling resistance from fundamental mechanics,IEEE Transactions on Industry Applications, IA-19(5), 1983,802–817. [19] R.S. Raghunathan, H.-D. Kim, and T. Setoguchi, Aerodynam-ics of high-speed railway train, Progress in Aerospace Sciences,38(6–7), 2002, 469–514. [20] J. Jouffryo and J. Lottin, Integrator backstepping using con-traction theory: A brief methodological note, Proc. 15th Tri-ennial World Congress, Barcelona, Spain, Jul. 21–26, 2002,238–238. [21] B.B. Sharma and I.N. Kar, Contraction based adaptive con-trol of a class of nonlinear systems, Proc. American ControlConference, St. Louis, MO, Jun. 10–12, 2009, 808–813. [22] M. Krsti´c, I. Kanellakopoulos, and P. Kokotovi´c, Nonlinearand adaptive control design (New York, NY: John Wiley andSons, 1995). [23] J. Peng, The traction and braking of high-speed train (Beijing:China Railway Publication House, 2009) (in Chinese).
Important Links:
Go Back