Yi Cao, Jason Gu, Yi Zang, Xiang Wu, Shijie Zhang, and Mengshi Guo
[1] F.J. Abu-Dakka, F. Valero, and V. Mata, Evolutionary pathplanning algorithm for industrial robots, Advanced Robotics,26(11–12), 2012, 1369–1392. [2] L.E. Kavraki, P. Svestka, J. Latombe and M.H. Overmars,Probabilistic roadmaps for path planning in high-dimensionalconfiguration spaces, IEEE Transactions on Robotics andAutomation, 12(4), 1996, 566–580. [3] I.A. S¸ucan and L.E. Kavraki, Kinodynamic motion planning byinterior-exterior cell exploration, in G.S. Chirikjian, H. Choset,M. Morales, and T. Murphey (eds.), Algorithmic Foundation ofRobotics VIII (Berlin, Heidelberg: Springer, 2009), 449–464. [4] J.J. Kuffner Jr. and S.M. LaValle, RRT-connect: An efficientapproach to single-query path planning, IEEE InternationalConference on Robotics and Automation, San Francisco, CA,2000, 995–1001. [5] F. Rubio, F.J. Abu-Dakka, F. Valero, and V. Mata, Comparingthe efficiency of five algorithms applied to path planning forindustrial robots, Industrial Robot: An International Journal,39(6), 2012, 580–591. [6] O. Khatib, Real-time obstacle avoidance for manipulators andmobile robots, The International Journal of Robotics Research,5(1), 1986, 90–98. [7] H.M. Choset, S. Hutchinson, K.M. Lynch, G. Kantor,W. Burgard, L.E. Kavraki, and S. Thrun, Principles ofrobot motion: Theory, algorithms, and implementations(Cambridge: MIT Press, 2005). [8] S. Klanke, D. Lebedev, R. Haschke, J. Steil, and H. Ritter,Dynamic path planning for a 7-dof robot arm, IEEE/RSJInternational Conference on Intelligent Robots and Systems,Beijing, 2006, 3879–3884. [9] H. Dong and Z. Du, Obstacle avoidance path planning of planarredundant manipulators using workspace density, InternationalJournal of Advanced Robotic Systems, 12(2), 2015, 1–9. [10] L.M. Capisani, T. Facchinetti, A. Ferrara, and A. Martinelli,Obstacle modelling oriented to safe motion planning and controlfor planar rigid robot manipulators, Journal of Intelligent andRobotic Systems, 71(2), 2013, 159–178. [11] S. Liu, J. Xu, X. Yang, and K. Chen, Interior point-basedmethod for surgical planning and risk analysis of robot-assisted liver tumor coagulation therapy system, IEEE International Conference on Robotics and Biomimetics, KaronBeach, Phuket, 2011, 44–49. [12] M.C. Cavusoglu, I. Villanueva, and F. Tendick, Workspaceanalysis of robotic manipulators for a teleoperated suturingtask, Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, 2001, 2234–2239. [13] Y. Cao, K. Lu, X. Li, and Y. Zang, Accurate numerical methodsfor computing 2D and 3D robot workspace, InternationalJournal of Advanced Robotic Systems, 8(6), 2011, 1–13. [14] F.L. Litvin, Application of theorem of implicit function systemexistence for analysis and synthesis of linkages, Mechanismand Machine Theory, 15(2), 1980, 115–125. [15] P.R. Bergamaschi, A.C. Nogueira, and S. de F´atima PereiraSaramago, Design and optimization of 3R manipulators usingthe workspace features, Applied Mathematics and Computation, 172(1), 2006, 439–463. [16] J. Yang, K. Abdel-Malek, and Y. Zhang, On the workspaceboundary determination of serial manipulators with non-unilateral constraints, Robotics and Computer-IntegratedManufacturing, 24(1), 2008, 60–76. [17] A. Kumar and K.J. Waldron, The workspaces of a mechanicalmanipulator, Journal of Mechanical Design, 103, 1981, 665. [18] K. Sugimoto and J. Duffy, Determination of extreme distances of a robot hand—Part 1: A general theory, Journal ofMechanical Design, 103(3), 1981, 631–636. [19] F. Freudenstein and E. Primrose, On the analysis and synthesisof the workspace of a three-link, turning-pair connected robotarm, Journal of Mechanisms, Transmissions and Automationin Design, 106(3), 1984, 365–370. [20] J.A. Snyman, L.J. Du Plessis, and J. Duffy, An optimizationapproach to the determination of the boundaries of manipulatorworkspaces, Journal of Mechanical Design, 122, 2000, 447. [21] S. Yahya, M. Moghavvemi, and H.A. Mohamed, Geometri-cal approach of planar hyper-redundant manipulators: In-verse kinematics, path planning and workspace, SimulationModelling Practice and Theory, 19(1), 2011, 406–422. [22] O. Bohigas, M. Manubens, and L. Ros, A complete methodfor workspace boundary determination on general structuremanipulators, IEEE Transactions on Robotics, 28(5), 2012,993–1006. [23] Y. Cao, H. Zang, L. Wu, and T. Lu, An engineering-orientedmethod for the three dimensional workspace generation ofrobot manipulator, Journal of Information and ComputationalScience, 8(1), 2011, 51–61. [24] Y. Cao, S. Qi, K. Lu, Y. Zang, and G. Yang, An integratedmethod for workspace computation of robot manipulator, IEEEInternational Joint Conference on Computational Sciences andOptimization, Hainan, China, 2009, 309–312. [25] D. Alciatore and C. Ng, Determining manipulator workspaceboundaries using the Monte Carlo method and least squaressegmentation, ASME Robotics: Kinematics, Dynamics andControl, 72, 1994, 141–146. [26] Y. Guan, K. Yokoi, and X. Zhang, Numerical methods forreachable space generation of humanoid robots, The International Journal of Robotics Research, 27(8), 2008, 935–950. [27] M.F. Aly and A.T. Abbas, Simulation of obstacles’ effecton industrial robots’ working space using genetic algorithm,Journal of King Saud University-Engineering Sciences, 26(2),2014, 132–143. [28] X. Yang, H. Wang, C. Zhang, and K. Chen, A method formapping the boundaries of collision-free reachable workspaces,Mechanism and Machine Theory, 45(7), 2010, 1024–1033. [29] N. Jetchev and M. Toussaint, Trajectory prediction in cluttered voxel environments, IEEE International Conference onRobotics and Automation, Anchorage, AK, 2010, 2523–2528. [30] R.P. Paul, Robot manipulators: Mathematics, programming,and control: The computer control of robot manipulators(Cambridge: MIT Press, 1981). [31] S. Chitta, E.G. Jones, M. Ciocarlie, and K. Hsiao, Perception,planning, and execution for mobile manipulation in unstructured environments, IEEE Robotics and Automation Magazine,19(2), 2012, 58–71. [32] R. Pure and S. Durrani, Computing exact Closed-Form distancedistributions in arbitrarily shaped polygons with arbitraryreference point, The Mathematica Journal, 2015. [33] A. Margalit and G.D. Knott, An algorithm for computing theunion, intersection or difference of two polygons, Computersand Graphics, 13(2), 1989, 167–183. [34] Y. Cao, K. Lu, Q. Xie, and X. Li, Shape and area computation ofcooperative workspace of dual-arm robot, IEEE InternationalConference on Information and Automation, Zhuhai, Macau,2009, 627–631.
Important Links:
Go Back