AN EFFICIENT NAVIGATION SYSTEM FOR AUTONOMOUS MOBILE ROBOTS IN DYNAMIC SOCIAL ENVIRONMENTS, 97-106.

Lan A. Nguyen,∗ Trung D. Ngo,∗∗ Trung D. Pham,∗ and Xuan T. Truong∗

References

  1. [1] G. Ferrer and A. Sanfeliu, Proactive kinodynamic planningusing the extended social force model and human motionprediction in urban environments, IEEE/RSJ Int. Conf. onIntelligent Robots and Systems (IROS 2014), Chicago, IL,USA, September, 2014, 1730–1735.
  2. [2] T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, and N. Hagita,An affective guide robot in a shopping mall, Proc. 4thACM/IEEE Int. Conf. on Human–Robot Interaction, La Jolla,California, USA, 2009, 173–180.
  3. [3] W. Lei, L. Chaomin, L. Ming, and C. Jingcao, Trajectoryplanning of an autonomous mobile robot by evolving ant colonysystem, International Journal of Robotics and Automation,32(4), 2017, 4917–4998.
  4. [4] C. Yanfeng, C. Hong, and G. Bingzhao, Real-time path trackingmethod using differential flatness for car-like mobile robot,International Journal of Robotics and Automation, 33(6), 2018,5056–5086.
  5. [5] S.M.H. Jafri and R. Kala, Motion planning for an outdoormobile robot on a probabilistic costmap, International Journalof Robotics and Automation, 34(6), 2019, 0078–0160.
  6. [6] X.T. Truong and T.D. Ngo, Toward socially aware robot navi-gation in dynamic and crowded environments: A proactive so-cial motion model, IEEE Transactions on Automation Scienceand Engineering, 14(4), 2017, 1743–1760.
  7. [7] E. Repiso, A. Garrell, and A. Sanfeliu, Adaptive side-by-sidesocial robot navigation to approach and interact with people,International Journal of Social Robotics, 12(4) 2019, 1–22.
  8. [8] H. Khambhaita and R. Alami, Viewing robot navigation in hu-man environment as a cooperative activity, Robotics Research.(Berlin: Springer, 2020), 285–300.
  9. [9] M. Shiomi, F. Zanlungo, K. Hayashi, and T. Kanda, To-wards a socially acceptable collision avoidance for a mobilerobot navigating among pedestrians using a pedestrian model,International Journal of Social Robotics, 6(3), 2014, 443–455.
  10. [10] X. T. Truong, N.Y. Voo, and T.D. Ngo, Socially awarerobot navigation system in human interactive environments,Intelligent Service Robotics, 10(4), 2017, 287–295.
  11. [11] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, andK. Konolige, The Office Marathon: Robust navigation in anindoor office environment, IEEE Int. Conf. on Robotics andAutomation, Anchorage, AK, USA, May, 2010, 300–307.
  12. [12] X.T. Truong and T.D. Ngo, Dynamic social zone based mo-bile robot navigation for human comfortable safety in socialenvironments, International Journal of Social Robotics, 8(5),2016, 663–684.
  13. [13] C. Rosmann, F. Hoffmann, and T. Bertram, Planning of multi-ple robot trajectories in distinctive topologies, 2015 EuropeanConf. on Mobile Robots (ECMR), Lincoln, UK, 2015, 1–6.
  14. [14] C. Rosmann, F. Hoffmann, and T. Bertram, Kinodynamictrajectory optimization and control for car-like robots, Proc. ofthe Int. Conf. on Intelligent Robots and Systems, Vancouver,BC, Canada, 2017, 5681–5686.
  15. [15] D. Helbing and P. Molnar, Social force model for pedestriandynamics, Physical Review E, 51(5) 1995, 4282–4286.
  16. [16] D. Fox, W. Burgard, and S. Thrun, The dynamic windowapproach to collision avoidance, IEEE Transactions on Roboticsand Automation, 4(1), 1997, 23–33.
  17. [17] J. van den Berg, C.L. Ming, and D. Manocha, Reciprocalvelocity obstacles for real-time multi-agent navigation, Proc.of the IEEE Int. Conf. on Robotics and Automation, 2008,1928–1935.
  18. [18] J. Snape, J. van den Berg, S. Guy, and D. Manocha, The hybridreciprocal velocity obstacle, IEEE Transactions on Robotics,27(4), 2011, 696–706.
  19. [19] D. Zhang, Z. Xie, P. Li, J. Yu, and X. Chen, Real-timenavigation in dynamic human environments using optimalreciprocal collision avoidance, Proc. of the 2015 IEEE Int.Conf. on Mechatronics and Automation, Beijing, China, 2015,2232–2237.
  20. [20] D. Claes, D. Hennes, and K. Tuyls, Towards human-safenavigation with pro-active collision avoidance in a sharedworkspace, Workshop on On-line decision-making in multi-robot coordination, Hamburg, Germany, 2015.
  21. [21] P. Fiorini and Z. Shillert, Motion planning in dynamic en-vironments using velocity obstacles, International Journal ofRobotics Research, 17, 1998, 760–772.
  22. [22] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, Collisionavoidance under bounded localization uncertainty, IEEE/RSJInt. Conf. on Intelligent Robots and Systems, Vilamoura,Portugal, 2012, 1192–1198.
  23. [23] R. Siegwart and I.R. Nourbakhsh, Introduction to AutonomousMobile Robots, A Bradford Book (Cambridge, MA: MITPress, 2004).
  24. [24] X.T. Truong, N.Y. Voo, and T.D. Ngo, RGB-D and laser datafusion-based human detection and tracking for socially awarerobot navigation framework, in Proc. of the 2015 IEEE Conf.on Robotics and Biomimetics, Zhuhai, China, December 2015,pp. 608–613.
  25. [25] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,and S. Savarese, Social lstm: Human trajectory prediction incrowded spaces, 2016 IEEE Conf. on Computer Vision andPattern Recognition, Las Vegas, USA, 2016, 961–971.
  26. [26] A. Vemula, K. Muelling, and J. Oh, Social attention: Modelingattention in human crowds, arXiv:1710.04689v2, 2018.
  27. [27] P. Zhang, W. Ouyang, P. Zhang, J. Xue, and N. Zheng,Sr-lstm: State refinement for lstm towards pedestrian trajec-tory prediction, arXiv:1903.02793v1, 2019.
  28. [28] Y. Ma, X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha,Trafficpredict: Trajectory prediction for heterogeneous traffic-agents, arXiv:1811.02146v5, 2019.

Important Links:

Go Back