MOBILE ROBOT ENERGY MODELLING INTEGRATED INTO ROS AND GAZEBO-BASED SIMULATION ENVIRONMENT, 66-73.

Walid Touzout, Djamel Benazzouz, and Yahia Benmoussa

References

  1. [1] S. Miah and W. Gueaieb, Mobile robot navigation usingdirection-sensitive RFID reader, Mechatronic Systems andControl (Formerly Control and Intelligent Systems), 39(4),2011, 254.
  2. [2] L. Hou, L. Zhang, and J. Kim, Energy modeling and powermeasurement for three-wheeled omnidirectional mobile robotsfor path planning, Electronics, 8(8), 2019, 843.
  3. [3] S. Dogru and L. Marques, A physics-based power model forskid-steered wheeled mobile robots, IEEE Transactions onRobotics, 34(2), 2018, 421–433.
  4. [4] R. Beniak and T. Pyka, An energy-consumption analysis of atri-wheel mobile robot, International Journal of Robotics andAutomation, 31(1), 2016.
  5. [5] M. Stampa, et al., Estimation of energy consumption on ar-bitrary trajectories of an omnidirectional automated guidedvehicle, 2015 IEEE 8th International Conference on In-telligent Data Acquisition and Advanced Computing Sys-tems: Technology and Applications (IDAACS), vol. 2 (IEEE,2015).
  6. [6] A. Sadrpour, J. Jin, and A.G. Ulsoy, Mission energy predic-tion for unmanned ground vehicles, 2012 IEEE InternationalConference on Robotics and Automation (IEEE, 2012).72
  7. [7] J. Brateman, C. Xian, and Y.-H. Lu, Energy-effcient schedul-ing for autonomous mobile robots, 2006 IFIP InternationalConference on Very Large Scale Integration (IEEE, 2006).
  8. [8] A. Sharma, N. Gupta, and E.G. Collins Jr., Energy efficientpath planning for skid-steered autonomous ground vehicles,Unmanned Systems Technology XIII, vol. 8045 (InternationalSociety for Optics and Photonics, 2011).
  9. [9] R.E. Precup, et al., On some low-cost tracking controllers formobile robots, Mechatronic Systems and Control (FormerlyControl and Intelligent Systems), 33(1), 2005, 1–12.
  10. [10] L. Hou, L. Zhang, and J. Kim, Energy modeling and powermeasurement for mobile robots, Energies, 12(1), 2019, 27.
  11. [11] Y. Mei, et al., Energy-efficient motion planning for mobilerobots, IEEE International Conference on Robotics and Au-tomation, 2004. Proceedings. ICRA 2004, vol. 5 (IEEE, 2004).
  12. [12] Y. Mei, et al., A case study of mobile robot’s energy consump-tion and conservation techniques, ICAR’05. Proceedings., 12thInternational Conference on Advanced Robotics (IEEE, 2005).
  13. [13] M. Wahab, F. Rios-Gutierrez, and A. El Shahat, EnergyModeling of Differential Drive Robots (IEEE, 2015).
  14. [14] S. Liu and D. Sun, Minimizing energy consumption of wheeledmobile robots via optimal motion planning, IEEE/ASMETransactions on Mechatronics, 19(2), 2013, 401–411.
  15. [15] R. Datouo, et al., Optimal motion planning for minimizingenergy consumption of wheeled mobile robots, 2017 IEEE In-ternational Conference on Robotics and Biomimetics (ROBIO)(IEEE, 2017).
  16. [16] S. L. Canfield, T. W. Hill, and S. G. Zuccaro, Predictionand experimental validation of power consumption of skid-steer mobile robots in manufacturing environments, Journalof Intelligent & Robotic Systems, 94(3–4), 2019, 825–839.
  17. [17] M.F. Jaramillo-Morales, et al., Predictive power estimation fora differential drive mobile robot based on motor and robotdynamic models, 2019 Third IEEE International Conferenceon Robotic Computing (IRC) (IEEE, 2019).
  18. [18] L. Zhang, J. Kim, and J. Sun, Energy modeling and exper-imental validation of four-wheel mecanum mobile robots forenergy-optimal motion control, Symmetry, 11(11), 2019, 1372.
  19. [19] W. Xu, et al., A practical energy modeling method for indus-trial robots in manufacturing, Monterey Workshop (Springer,Cham, 2016).
  20. [20] L. Xie, et al., Power-minimization and energy-reduction au-tonomous navigation of an omnidirectional Mecanum robotvia the dynamic window approach local trajectory planning,International Journal of Advanced Robotic Systems, 15(1),2018, 1729881418754563.
  21. [21] H. Kim and B.K. Kim, Minimum-energy trajectory planningand control on a straight line with rotation for three-wheeledomni-directional mobile robots, 2012 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IEEE, 2012).
  22. [22] J. Kramer and M. Scheutz, Development environments forautonomous mobile robots: A survey, Autonomous Robots,22(2), 2007, 101–132.
  23. [23] L. ˇZlajpah, Simulation in robotics, Mathematics and Computersin Simulation, 79(4), 2008, 879–897.
  24. [24] L. Pitonakova, et al., Feature and performance comparisonof the V-REP, Gazebo and ARGoS robot simulators, AnnualConference Towards Autonomous Robotic Systems (Springer,Cham, 2018).
  25. [25] N. Koenig and A. Howard, Design and use paradigms forgazebo, an open-source multi-robot simulator, 2004 IEEE/RSJInternational Conference on Intelligent Robots and Systems(IROS)(IEEE Cat. No. 04CH37566), vol. 3 (IEEE, 2004).
  26. [26] Z.B. Rivera, M.C. De Simone, and D. Guida, Unmannedground vehicle modelling in Gazebo/ROS-based environments,Machines, 7(2), 2019, 42.
  27. [27] M.M.M. Manhes, et al., UUV simulator: A gazebo-based pack-age for underwater intervention and multi-robot simulation,OCEANS 2016 MTS/IEEE Monterey (IEEE, 2016).
  28. [28] M. Zhang, et al., A high fidelity simulator for a quadrotor UAVusing ROS and Gazebo, IECON 2015-41st Annual Conferenceof the IEEE Industrial Electronics Society (IEEE, 2015).
  29. [29] M. Paravisi, et al., Unmanned surface vehicle simulator withrealistic environmental disturbances, Sensors, 19(5), 2019,1068.
  30. [30] Emanual.robotis, 29 December 2019. http://emanual.robotis.com/docs/en/platform/turtlebot3/overview.
  31. [31] Github, 29 December 2019. https://github.com/ROBOTIS-GIT/turtlebot3.

Important Links:

Go Back