Sanjeet Kumar, Supreme Das, Agnimitra Biswas, and Biplab Das
View Full Paper
[1] J.C. Mojumder, W.T. Chong, H.W. Ong, K.Y. Leong, andA.A. Mamoon, An experimental investigation on performanceanalysis of air type photovoltaic thermal collector systemintegrated with cooling fins design, Energy Building, 130, 2016,272–285. [2] N. Dimri, A. Tiwari, and G.N. Tiwari, Thermal modelling ofsemitransparent photovoltaic thermal (PVT) with thermoelec-tric cooler (TEC) collector, Energy Conversion Management,146, 2017, 68–77. [3] M.E. Slimani-El, M. Amirat, and S. Bahria, Study and model-ing of heat transfer and energy performance in a hybrid PV/Tcollector with double passage of air, International Journal ofEnergy for a Clean Environment, 16(1–4), 2015, 235–245. [4] M. Slimani, M. Amirat, I. Kurucz, S. Bahria, A. Hamidat,and W.B. Chaouch, A detailed thermal-electrical model ofthree photovoltaic/thermal (PV/T) hybrid air collectors andphotovoltaic (PV) module: Comparative study under Algiersclimatic conditions, Energy Conversion Management, 133,2017, 458–476. [5] P. Velmurugan and R. Kalaivanan, Thermal performance stud-ies on multi-pass flat-plate solar air heater with longitudinalfins: An analytical approach, Arabian Journal of Science andEngineering, 40(4) , 2015, 1141–1150. [6] P. Velmurugan and R. Kalaivanan, Energy and exergy analysisof solar air heaters with varied geometries, Arabian Journal ofScience and Engineering, 40(4), 2015, 1173–1186. [7] E. Cuce and P.M. Cuce, Tilt angle optimization and passivecooling of Building-Integrated Photovoltaics (BIPVs) for bet-ter electrical performance, Arabian Journal of Science andEngineering, 39(11), 2014, 8199–8270. [8] N.K. Pandey, V.K. Bajpai, and Varun, Heat transfer andfriction factor study of a solar air heater having multiple arcswith gap-shaped roughness element on absorber plate, ArabianJournal of Science and Engineering, 44(11), 2016, 4517–4530. [9] M. Abu¸ska and M.B. Akgl, Experimental study on thermalperformance of a novel solar air collector having conical springson absorber plate, Arabian Journal of Science and Engineering,44(11), 2016, 4509–4516. [10] E. Hikmet, Experimental energy and exergy analysis of adouble-flow solar air heater having different obstacles on ab-sorber plates, Building and Environment, 43, 2008, 1046–1054. [11] K. Touafek, A. Khelifa, H. Haloui, H.B.C. El Hocine, L.Boutina, M.T. Baissi, S. Haddad, and I. Tabet, Improvementof performances of solar photovoltaic/thermal air collector inSouth Algeria, 2018 6th International Renewable and Sus-tainable Energy Conference (IRSEC), Rabat, Morocco, 5–8December 2018. [12] J.C. Mojumder, W.T. Chong, H.C. Ong, K.Y. Leong, andA. Mamoon, An experimental investigation on performanceanalysis of air type photovoltaic thermal collector systemintegrated with cooling fins design, Energy and Buildings, 130,2016, 272–285. [13] J. Hu and G. Zhang, Performance improvement of solar aircollector based on airflow reorganization: A review, AppliedThermal Engineering, 155, 2019, 592–611. [14] S. Diwania, S. Agrawal, A.S. Siddiqui, and S. Singh,Photovoltaic–thermal (PV/T) technology: A comprehensivereview on applications and its advancement, InternationalJournal of Energy and Environmental Engineering, 11, 2020,33–54. [15] M. Chandrasekar, S. Suresh, and T. Senthilkumar, Passivecooling of standalone flat PV module with cotton wick struc-tures, Energy Conversion and Management, 71, 2013, 43–50. [16] A. Tiwari, M.S. Sodha, A. Chandra, and J.C. Joshi, Perfor-mance evaluation of photovoltaic thermal solar air collector forcomposite climate of India, Solar Energy Materials & SolarCells, 90, 2006, 175–189. [17] G. Tiwari, R. Mishra, and S. Solanki, Photovoltaic modulesand their applications: A review on thermal modelling, AppliedEnergy, 88, 2011, 2287–2304. [18] A. Joshi, A. Tiwari, G. Tiwari, I. Dincer, and B.V. Reddy, Per-formance evaluation of a hybrid photo voltaic thermal (PV/T)(glass-to-glass) system, International Journal of Thermal Sci-ences, 48, 2009, 154–164. [19] R.K. Mishra and G. Tiwari, Evaluation of an integrated pho-tovoltaic thermal solar (IPVTS) water heating system for var-ious configurations at constant collection temperature, WorldRenewable Energy Congress, Linkoping (Sweden: Citeseer,2011), 3749–3756. [20] S. Dubey, S. Solanki, and A. Tiwari, Energy and exergyanalysis of PV/T air collectors connected in series, Energy andBuildings, 41, 2009, 863–870. [21] M. Hedayatizadeh, F. Sarhaddi, A. Safavinejad, F. Ranjbar,and H. Chaji, Exergy loss-based efficiency optimization of adouble-pass/glazed v-corrugated plate solar air heater, Energy,94, 2016, 799–810. [22] A. Gaur and G.N. Tiwari, Performance of photovoltaic modulesof different solar cells, Journal of Solar Energy, 2013, 2013,Article ID 734581.
Important Links:
Go Back