NETWORKED STATE ESTIMATION OVER LOSSY COMMUNICATION CHANNELS WITH DATA RATE LIMITATION, 115-121.

Chunqiang Chen, Weiming Tang, Qingquan Liu, and Zhihui Dang

References

  1. [1] Z. Zhou, H. Wang, Z. Hu, and X. Xue, Finite time stability ofdiscrete markovian jump system over networks with randomdual-delay, Mechatronic Systems and Control, 47(3), 2019,153–161.
  2. [2] A. Cetinkaya, H. Ishii, and T. Hayakawa, Networked controlunder random and malicious packet losses, IEEE Transactionson Automatic Control, 62(5), 2017, 2434–2449.
  3. [3] P. Tallapragada, M. Franceschetti, and J. Cort´es, Event-triggered second-moment stabilization of linear systems underpacket drops, IEEE Transactions on Automatic Control, 63(8),2018, 2374–2388.
  4. [4] R.M. Jungers, A. Kundu, and W.P.M.H. Heemels, Observ-ability and controllability analysis of linear systems subject todada losses, IEEE Transactions on Automatic Control, 63(10),2018, 3361–3376.
  5. [5] Z. Ren, P. Cheng, L. Shi, and Y. Dai, State estimation overdelayed mutihop network, IEEE Transactions on AutomaticControl, 63(10), 2018, 3545–3550.
  6. [6] Q. Liu and R. Ding, State estimation for networked controlsystems with random time delays, Mechatronic Systems andControl, 46(3), 2018, 115–120.120
  7. [7] Q. Liu, Minimum information rate for observability of linearsystems with stochastic time delay, International Journal ofControl, 92(3), 2019, 476–488.
  8. [8] Q. Liu. and C. Yu, Quantization and coding for networkedcontrol under data-rate limitations, Mechatronic Systems andControl, 48(2), 2020, 128–133.
  9. [9] S. Tatikonda and S.K. Mitter, Control under communicationconstraints, IEEE Transactions on Automatic Control, 49(7),2004, 1056–1068.
  10. [10] Q. Liu and F. Jin, State estimation for networked controlsystems using fixed data rates, International Journal of SystemsScience, 48(9), 2017, 1818–1828.
  11. [11] Q. Liu and D. Rui, Observability and stabilisability of net-worked control systems with limited data rates, InternationalJournal of Systems Science, 49(11), 2018, 2463–2476.
  12. [12] Q. Ling, Bit rate conditions to stabilize a continuous-time scalarlinear system based on event triggering, IEEE Transactionson Automatic Control, 62(8), 2017, 4093–4100.
  13. [13] L. Li, X. Wang, and M.D Lemmon, Efficiently attentive event-triggered systems with limited bandwidth, IEEE Transactionson Automatic Control, 62(3), 2017, 1491–1497.
  14. [14] M. Xia, V. Gupta and P.J. Antsaklis, Networked state estima-tion over a shared communication medium, IEEE Transactionson Automatic Control, 62(4), 2017, 1729–1741.
  15. [15] M. Muehlebach and S. Trimpe, Distributed event-based stateestimation for networked systems: A LMI approach, IEEETransactions on Automatic Control, 63(1), 2018, 269–276.
  16. [16] Y. Li, S. Philips, and R.G. Sanfelice, Robust distributedestimation for linear systems under intermittent information,IEEE Transactions on Automatic Control, 63(4), 2018, 973–988.
  17. [17] X. Ren, J. Wu, K.H. Johansson, G. Shi, and L. Shi, Infi-nite horizon optimal transmission power control for remotestate estimation over fading channels, IEEE Transactions onAutomatic Control, 63(1), 2018, 85–100.
  18. [18] X. Ren, J. Wu, K.H. Johansson, G. Shi, and L. Shi, Twononlinear observers based sliding mode controller for a multi-variable continuous stirred tank reactor, Mechatronic Systemsand Control, 63(1), 2018, 85–100.
  19. [19] T. Cover and J. Thomas, Elements of Information Theory.New York: Wiley, 2006.

Important Links:

Go Back