Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
OBSTACLE AVOIDANCE MODEL BASED ON FUZZY CONTROL FOR MULTI-SENSOR INFORMATION FUSION OF UNMANNED AERIAL VEHICLES
Fuli Qi and Ling Yang
References
[1] B. Mao, X. Wu, J. Lv, and G. Chen, Predefined-time boundedconsensus of multiagent systems with unknown nonlinearityvia distributed adaptive fuzzy control, IEEE Transactions onCybernetics, 53(4), 2022, 2622–2635.
[2] Y. Fang, B. Luo, T. Zhao, D. He, B. Jiang, and Q.Liu, ST-SIGMA: Spatio-temporal semantics and interactiongraph aggregation for multi-agent perception and trajectoryforecasting, CAAI Transactions on Intelligence Technology,7(4), 2022, 744–757.
[3] S. Na, H. Niu, B. Lennox, and F. Arvin, Bio-inspired collisionavoidance in swarm systems via deep reinforcement learning,IEEE Transactions on Vehicular Technology, 71(3), 2022,2511–2526.
[4] R. Huang, C. Qin, J.L. Li, and X. Lan, Path planning of mobilerobot in unknown dynamic continuous environment usingreward-modified deep Q-network, Optimal Control Applicationsand Methods, 44(3), 2023, 1570–1587.
[5] V.S.R. Kosuru and A.K. Venkitaraman, Developing a deep Q-learning and neural network framework for trajectory planning,European Journal of Engineering and Technology Research,7(6), 2022, 148–157.
[6] B. Wang, S.G. Nersesov, and H. Ashrafiuon, Robust formationcontrol and obstacle avoidance for heterogeneous underactuatedsurface vessel networks, IEEE Transactions on Control ofNetwork Systems, 9(1), 2022, 125–137.
[7] J. Xu, C. Qian, J.W. Park, and K.S. Park, Adaptive sampling-based moving obstacle avoidance for cable-driven parallelrobots, IEEE/ASME Transactions on Mechatronics, 27(6),2022, 4983–4993.
[8] J. Qi, J. Guo, M. Wang, C. Wu, and Z. Ma, Formation trackingand obstacle avoidance for multiple quadrotors with static anddynamic obstacles, IEEE Robotics and Automation Letters,7(2), 2022, 1713–1720.
[9] B. Guo, N. Guo, and Z. Cen, Obstacle avoidance withdynamic avoidance risk region for mobile robots in dynamicenvironments, IEEE Robotics and Automation Letters, 7(3),2022, 5850–5857.
[10] T.N. Mustafaevich and R. Shakhboz, System for analyzing andprocessing data on university staff based on a fuzzy controllerwith a fixed knowledge base, Open Access Repository, 8(3),2022, 16–21.
[11] Y. Pan, Y. Wu, and H.K. Lam, Security-based fuzzy controlfor nonlinear networked control systems with DoS attacks via aresilient event-triggered scheme, IEEE Transactions on FuzzySystems, 30(10), 2022, 4359–4368.
[12] P. Chotikunnan, R. Chotikunnan, A. Nirapai, A.Wongkamhang, P. Imura, and M. Sangworasil, Optimizingmembership function tuning for fuzzy control of roboticmanipulators using PID-driven data techniques, Journal ofRobotics and Control, 4(2), 2023, 128–140.
[13] M. Li, H. Chen, and R. Zhang, An input dead zones consideredadaptive fuzzy control approach for double pendulum craneswith variable rope lengths, IEEE/ASME Transactions onMechatronics, 27(5), 2022, 3385–3396.5
[14] T. Xu, H. Zhou, S. Tan, Z. Li, X. Ju, and Y. Peng,Mechanical arm obstacle avoidance path planning based onimproved artificial potential field method, Industrial Robot: TheInternational Journal of Robotics Research and Application,49(2), 2022, 271–279.
[15] D. Cui and Z. Xiang, Nonsingular fixed-time fault-tolerantfuzzy control for switched uncertain nonlinear systems, IEEETransactions on Fuzzy Systems, 31(1), 2022, 174–183.
[16] W. Tang, Y. Zhou, T. Zhang, Y. Liu, J. Liu, and Z. Ding,Cooperative collision avoidance in multirobot systems usingfuzzy rules and velocity obstacles, Robotica, 41(2), 2023,668–689.
[17] A. Hentout, A. Maoudj, and M. Aouache, A review of theliterature on fuzzy-logic approaches for collision-free pathplanning of manipulator robots, Artificial Intelligence Review,56(4), 2023, 3369–3444.
[18] S. Kumar, D.R. Parhi, and M.K. Muni, Path planningand obstacle avoidance of multi-robotic system in staticand dynamic environments, Proceedings of the Institutionof Mechanical Engineers, Part B: Journal of EngineeringManufacture, 237(9), 2023, 1376–1390.
[19] B. P´erez-Canedo and J.L. Verdegay, On the application of alexicographic method to fuzzy linear programming problems,Journal of Computational and Cognitive Engineering, 2(1),2023, 47–56.
[20] A. Islam, F. Othman, N. Sakib, and H.M.H. Babu, Preventionof shoulder-surfing attack using shifting condition withthe digraph substitution rules, Artificial Intelligence andApplications, 1(1), 2023, 58–68.
[21] P.D. Puninchathaya, M. Rao, R. Rao, S. Kumar, and R.M.Ahmed, Experimental investigations on flexurally amplifiedpiezoactuator based active vibration isolation system usingPID controller, Mechatronic Systems and Control, 49(3), 2021,132–141.
[22] M.R. Mohd Romlay, A. Mohd Ibrahim, S.F. Toha, P. DeWilde, I. Venkat, and M.S. Ahmad, Obstacle avoidance fora robotic navigation aid using fuzzy logic controller-optimalreciprocal collision avoidance (FLC-ORCA), Neural Computingand Applications, 35(30), 2023, 22405–22429.
[23] F. Umam, M. Fuad, I. Suwarno, A. Ma’arif, and W.Caesarendra, Obstacle avoidance based on stereo visionnavigation system for omni-directional robot, Journal ofRobotics and Control, 4(2), 2023, 227–242.
[24] W. Wu and Y. Wei, Guiding unmanned aerial vehicle pathplanning design based on improved ant colony algorithm,Mechatronic Systems and Control, 49(1), 2021, 48–54.
[25] N. Gupta and L. Dewan, Trajectory tracking and balancingcontrol of rotary inverted pendulum system using quasi-sliding mode control, Mechatronic Systems and Control, 50(1),2022, 1–8.
Important Links:
Abstract
DOI:
10.2316/J.2024.201-0473
From Journal
(201) Mechatronic Systems and Control - 2025
Go Back