STATE ESTIMATION AND ENERGY MANAGEMENT OF MICROGRID ENERGY STORAGE SYSTEM USING PARTICLE FILTER AND MARKOV CHAIN MONTE CARLO, 1-14.

Libin Yang, Tingxiang Liu, Zhengxi Li, Wanpeng Zhou, Zhengxi Li, and Na An

References

  1. [1] Y. Li, R. Wang, and Z. Yang, Optimal scheduling of isolatedmicrogrids using automated reinforcement learning-basedmulti-period forecasting, IEEE Transactions on SustainableEnergy,13(1), 2021, 159–169.12
  2. [2] R. Carli, G. Cavone, T. Pippia, B. De Schutter, and M. Dotoli,Robust optimal control for demand side management of multi-carrier microgrids, IEEE Transactions on Automation Scienceand Engineering,19(3), 2022, 1338–1351.
  3. [3] L. Yin, K.N. Kim, A. Trifonov, T. Podhajny, and J. Wang,Designing wearable microgrids: Towards autonomous sustain-able on-body energy management, Energy & EnvironmentalScience, 15(1), 2022, 82101.
  4. [4] N. Ju, J. Awan, R. Gong, and V. Rao, Data augmentationMCMC for Bayesian inference from privatized data, Proc.Advances in Neural Information Processing Systems, 2022,12732–12743.
  5. [5] Q. Qin, and J.P. Hobert, Wasserstein-based methods forconvergence complexity analysis of MCMC with applica-tions, The Annals of Applied Probability, 32(1), 2022,124–166.
  6. [6] Y. Fang, B. Luo, T. Zhao, D. He, B. Jiang, and Q.Liu, ST-SIGMA: Spatio-temporal semantics and interactiongraph aggregation for multi-agent perception and trajectoryforecasting, CAAI Transactions on Intelligence Technology,7(4), 2022, 744–757.
  7. [7] B. Duan, Q. Zhang, F. Geng, and C Zhang, Remaining usefullife prediction of lithium-ion battery based on extended Kalmanparticle filter, International Journal of Energy Research, 44(3),2020, 1724–1734.
  8. [8] V. Malviya and R. Kala, Trajectory prediction and trackingusing a multi-behaviour social particle filter, Applied Intelli-gence, 52(7), 2022, 7158–7200.
  9. [9] P. Kamsing, P. Torteeka, and S. Yooyen, An enhancedlearning algorithm with a particle filter-based gradient descentoptimizer method, Neural Computing and Applications, 32,2020, 12789–12800.
  10. [10] T. Meng, Z. Lin, and Y.A. Shamash, Distributed cooperativecontrol of battery energy storage systems in DC microgrids,IEEE/CAA Journal of Automatica Sinica, 8(3), 2021,606–616.
  11. [11] A. Khalid, A. Stevenson, and A.I. Sarwat, Overview of technicalspecifications for grid-connected microgrid battery energystorage systems, IEEE Access, 9, 2021, 163554–163593.
  12. [12] A. Joshi, A. Suresh, and S. Kamalasadan, Grid frequencyregulation based on point of common coupling angle deviationcontrol of distributed energy resources with fully activehybrid energy storage system, IEEE Transactions on IndustryApplications, 57(5), 2021, 4473–4485.
  13. [13] M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, and S.Asadi, Transactive energy management for optimal schedulingof interconnected microgrids with hydrogen energy storage,International Journal of Hydrogen Energy, 46(30), 2021,16267–16278.
  14. [14] M.M. Islam, M. Nagrial, J. Rizk, and A Hellany, Dual stagemicrogrid energy resource optimization strategy consideringrenewable and battery storage systems, International Journalof Energy Research, 45(15), 2021, 21340–21364.
  15. [15] C. Pozna, R.E. Precup, E. Horv´ath, and E.M. Petriu,Hybrid particle filter–particle swarm optimization algo-rithm and application to fuzzy controlled servo sys-tems, IEEE Transactions on Fuzzy Systems, 30(10), 2022,4286–4297.
  16. [16] A. Gunatilake, S. Kodagoda, and K. Thiyagarajan, Anovel UHF-RFID dual antenna signals combined withGaussian process and particle filter for in-pipe robot local-ization, IEEE Robotics and Automation Letters, 7(3), 2022,6005–6011.
  17. [17] M. Ballesio, A. Jasra, E. von Schwerin, and R. Tempone,A Wasserstein coupled particle filter for multilevel esti-mation, Stochastic Analysis and Applications, 41(5), 2023,820–859.
  18. [18] T. Dalgaty, N. Castellani, C. Turck, K.E. Harabi, D. Querlioz,and E. Vianello, In situ learning using intrinsic memristorvariability via Markov chain Monte Carlo sampling, NatureElectronics, 4(2), 2021, 151–161.
  19. [19] E. Srilakshmi and S.P. Singh, Energy regulation of EV usingMILP for optimal operation of incentive based prosumermicrogrid with uncertainty modelling, International Journalof Electrical Power & Energy Systems, 134(1), 2022,1–12.
  20. [20] H. Bakhtiari, J. Zhong, and M. Alvarez, Predicting the stochas-tic behavior of uncertainty sources in planning a stand-alonerenewable energy-based microgrid using Metropolis-coupledMarkov chain Monte Carlo simulation, Applied Energy, 290(5),2021, 1–15.
  21. [21] O.M. Salim, A. Aboraya, and S.I. Arafa, New cascadedcontroller for a standalone microgrid-connected inverter basedon triple action controller and particle swarm optimization,Institution Engineering Technology Generation Transmission& Distribution, 14(17), 2020, 3389–399.
  22. [22] D.A. Gadanayak and R.K. Mallick, Microgrid protection usingiterative filtering, International Transactions on ElectricalEnergy Systems, 30(3), 2020, 1–22.
  23. [23] C.D. Quilty, D. Wu, W. Li, D.C. Bock, L. Wang, L.M. Housel, A.Abraham, K.J. Takeuchi, A.C. Marschilok, and E.S. Takeuchi,Electron and ion transport in lithium and lithium ion batterynegative and positive composite electrodes, Chemical Reviews,123(4), 2023, 1327–1363.

Important Links:

Go Back