Xiaosong Wang and Jun Shen
[1] X. Wang, X. Li, Z. Zheng, and Y. Li, A research of treeimage Markov random field segmentation method based ongenetic algorithm, Mechatronic Systems and Control, 51(3),2023, 166–171. [2] R. Thapa, K. Zhang, N. Snavely, S. Belongie, and A. Khan,The plant pathology challenge 2020 data set to classify foliardisease of apples, Applications in plant sciences, 8(9), 2020,e11390. [3] K. Simonyan, and A. Zisserman. Very deep convolutionalnetworks for large-scale image recognition. arXiv preprintarXiv:1409.1556, 2014. [4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D.Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Goingdeeper with convolutions. Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition (CVPR), 2015,1-9. [5] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,Rethinking the inception architecture for computer vision.Proceedings of the IEEE Conference on Computer Vision andPattern Recognition (CVPR), 2016, 2818-2826. [6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learningfor image recognition. Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition (CVPR), 2016,770-778. [7] G. Huang, Z. Liu, L. van der Maaten, and K.Q. Weinberger.Densely connected convolutional networks. Proceedings of theIEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2017, pp. 4700–4708. [8] A. Yadav, U. Thakur, R. Saxena, V. Pal, V. Bhateja, andJ.C.-W. Lin, AFD-Net: Apple Foliar disease multi classificationusing deep learning on plant pathology dataset, Plant and Soil,477(1-2), 2022, 595-611. [9] Y. Ferdi, Data augmentation through background removal forApple Leaf disease classification using the MobileNetV2 model,ArXiv abs/2412.01854, 2024. [10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X.Zhai, T. Unterthiner, M. Dehghani, et al. ”An Image is Worth16x16 Words: Transformers for Image Recognition at Scale.” International Conference on Learning Representation, 2021.ArXiv abs/2010.11929. [11] Xinbin Yuan, Cong Yu, Bin Liu, Henan Sun, XianyuZhu, ”CGAN-IRB: a novel data augmentation method forapple leaf diseases.” In the proceedings of 2021 IEEE 45thAnnual Computers, Software, and Applications Conference(COMPSAC), 2021, pp. 192–200. [12] B. Min, T. Kim, D. Shin, D. Shin, Data Augmentation Methodfor Plant Leaf Disease Recognition, Applied Sciences, 13(3),2023, 1465. [13] F. Yang, K. Wang, L. Sun, M. Zhai, J. Song, H. Wang, Ahybrid sampling algorithm combining synthetic minority over-sampling technique and edited nearest neighbor for missedabortion diagnosis, BMC Medical Informatics and DecisionMaking, 22(1), 2022. [14] N. Jiang, and C. Li, Active collision avoidance control basedon convolutional neural network for blind zone perception ofautomotive sensors, 234-242, Mechatronic Systems and Control,52(4), 2024. [15] J. Maur´ıcio, I. Domingues, J. Bernardino, Comparing visiontransformers and convolutional neural networks for imageclassification: A literature review, Applied Sciences, 13(9),2023, 5521. [16] K. Vora, and D. Padalia. An ensemble of convolutional neuralnetworks to detect foliar diseases in apple plants. ArXivabs/2210.00298, 2022. [17] A. Haridasan, J. Thomas, and E.D. Raj, Deep learningsystem for paddy plant disease detection and classifica-tion, Environmental monitoring and assessment, 195(1),2022, 120. [18] S. Dananjayan, Y. Tang, J. Zhuang, C. Hou, and S. Luo,Assessment of state-of-the-art deep learning based citrusdisease detection techniques using annotated optical leafimages, Computers and Electronics in Agriculture, 193, 2022,106658. [19] R. Gajjar, N. Gajjar, V.J. Thakor, N.P. Patel, and S. Ruparelia,Real-time detection and identification of plant leaf diseasesusing convolutional neural networks on an embedded platform,The Visual Computer, 38(8), 2022, 2923-2938. [20] M. Srinivasa Rao, S. Praveen Kumar, K. Srinivasa Rao,Classification of medical plants based on hybridization ofmachine learning algorithms, Indian Journal of InformationSources and Services, 13(2), 2023, 14-21. [21] R.K. Singh, A. Tiwari, and R.K. Gupta, Deep trans-fer modeling for classification of Maize plant leaf dis-ease, Multimedia Tools and Applications, 81(5), 2022,6051-6067. [22] M.V. Conde, and D. Gordeev, Accessible large-scaleplant pathology recognition. NeurIPS, 2022 Workshopon Tackling Climate Change with Machine Learning,https://www.climatechange.ai/papers/neurips2022/85 [23] W. Ullah, K. Javed, M.A. Khan, F.Y. Alghayadh, M.W.Bhatt, I.S. Al Naimi, and I. Ofori, Efficient identificationand classification of apple leaf diseases using lightweightvision transformer (ViT), Discover Sustainability, 5(1),2024. [24] A.A. Yatoo, and A. Sharma, An indigenous dataset for thedetection and classification of apple leaf diseases, Data in brief,53, 2024, 110165.
Important Links:
Go Back