Lu Wang, Zerui Wang, Yang Zhang, Jiaxuan Liang, and Li Liu
[1] H. Sun, Y. Zhang, P. Chen, Z. Dan, S. Sun, J. Wan, and W.Li, Scale-free heterogeneous cycleGAN for defogging from asingle image for autonomous driving in fog, Neural Computingand Applications, 35, 2023, 1–15. [2] L. Wang, D Ren, X Tian, Y Zhang, and D Hu, Pinewilt disease tree recognition on UAV images via samplingthreshold interval weighting method and double-head detection,International Journal of Robotics and Automation, 39(1), 2024,68–76. [3] J. Fan, W. Xu, Y. Wu, and Y. Gong, Human tracking usingconvolutional neural networks, IEEE transactions on NeuralNetworks, 21(10), 2010, 1610–1623. [4] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, Multi-level wavelet-CNN for image restoration, in Proceedings of theIEEE Conference on Computer Vision and Pattern RecognitionWorkshops, 2018, 773–782. [5] S. Ren, X. Liu, H. Liu, and L. Wang, Cultivated landsegmentation of remote sensing image based on PSPNet ofattention mechanism, International Journal of Robotics andAutomation, 37(1), 2022, 11–19. [6] H Sun, Y Zang, L Wang, S Ren, X. Wang, and X. Chen, Multi-scale cross fusion fine-grained network for identifying invasiveplants, International Journal of Robotics and Automation,39(5), 2024, 431–440. [7] X. Huang, J. Li, Y. Zhang, and F. Zhang, Recognitionand detection technology of ice-covered insulators undercomplex environment, High Voltage Engineering, 43(3), 2017,891–899. [8] M. Xiren, L.I.N. Zhicheng, J. Hao, C. Jing, L.I.U. Xinyu, andZ. Shengbin, Fault detection of power tower anti-bird spursbased on deep convolutional neural network, Power SystemTechnology, 45(1), 2021, 126–133. [9] S. Lin, M. Liu, and Z. Tao, Detection of underwater treasuresusing attention mechanism and improved YOLOv5, Trans-actions of the Chinese Society of Agricultural Engineering,37(18), 2021, 307–314. [10] S. Hao, L. Yang, X. Ma, R.Z. Ma, and H. Wen,YOLOv5 transmission line fault detection based on attentionmechanism and cross-scale feature fusion, in Proceedings of theCSEE, 2022, 1–12, http://kns.cnki.net/kcms/detail/11.2107.tm.20220126.1718.008.html. [11] X. Tao, D. Zhang, Z. Wang, X. Liu, H. Zhang, and D.Xu, Detection of power line insulator defects using aerialimages analyzed with convolutional neural networks, IEEETransactions on Systems, Man, and Cybernetics: Systems,50(4), 2018, 1486–1498. [12] Z.D. Zhang, B. Zhang, Z.C. Lan, and H.C. Liu, FINet:An insulator dataset and detection benchmark based onsynthetic fog and improved YOLOv5, IEEE Transactions onInstrumentation and Measurement, 71, 2022, 1–8. [13] M. Tomaszewski, B. Ruszczak, and P. Michalski, The collectionof images of an insulator taken outdoors in varying lightingconditions with additional laser spots, Data in Brief, 18, 2018,765–768. [14] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, Cifar10-DVS: Anevent-stream dataset for object classification, Frontiers inNeuroscience, 11, 2017, 309–318. [15] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, andL. Fei-Fei, ImageNet: A large-scale hierarchical imagedatabase, in Proceeding of the IEEE Conference on Com-puter Vision and Pattern Recognition, Miami, FL, 2009,248–255. [16] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towardsreal-time object detection with region proposal networks, inProceeding of the Advances in Neural Information ProcessingSystems, Montreal, QC, 2015, 1137–1149. [17] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin,Libra R-CNN: Towards balanced learning for object detection,in Proceedings of the IEEE/CVF Conference on ComputerVision and Pattern Recognition, Long Beach, CA, 2019,821–830. [18] J. Redmon and A. Farhadi Yolov3: An incremental improve-ment, 2018, arXiv:1804.02767. [19] Q. Chen, Y. Wang, T. Yang, X. Zhang, J. Cheng, and J.Sun, You only look one-level feature, in Proceedings of theIEEE/CVF Conference on Computer Vision and PatternRecognition, Nashville, TN, 2021, 13039–13048. [20] D. Reis, J. Kupec, J. Hong, and A. Daoudi, Real-time flyingobject detection with YOLOv8, 2023, arXiv:2305.09972. [21] J. Pang, K. Chen, J. Shi, et al. Libra R-CNN: Towards balancedlearning for object detection, in Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition, LongBeach, CA, 2019, 821–830. [22] Y. Li, H. Mao, R. Girshick, and K. He, Exploring plain visiontransformer backbones for object detection, in Proceeding ofthe European Conference on Computer Vision, Cham, 2022,280–296. [23] Zhu, J Wang, Z Jiang, F Zong, S Liu, Z Li, and J. Sun,Autoassign: Differentiable label assignment for dense objectdetection. arXiv 2020[J]. arXiv preprint arXiv:2007.03496,2007.
Important Links:
Go Back