ACTIVE FLEXIBILITY AND STABILITY CONTROL FOR HYDRAULIC QUADRUPED ROBOTS. 98-110

Chikun Gong, Jin Yang, and Lipeng Yuan

References

  1. [1] Y. Ding, A. Pandala, and H.-W.Park, Real-time modelpredictive control for versatile dynamic motions in quadrupedalrobots, in Proceeding of the IEEE International Conference onRobotics and Automation, Montreal, QC, 2019, 8484–8490.
  2. [2] B. Katz, J.D. Carlo, and S. Kim, Mini Cheetah: A platformfor pushing the limits of dynamic quadruped control, inProceeding of the IEEE International Conference on Roboticsand Automation, Montreal, QC, 2019, 6295–6301.
  3. [3] M. Raibert, K. Blankespoor, G. Nelson, and R.B. Playter, Therough-terrain quadruped robot, IFAC Proceedings Volumes,41(2), 2008, 10822–10825.
  4. [4] O. Villarreal, V. Barasuol, P.M. Wensing, D.G. Caldwell,and C. Semini, MPC-based controller with terrain insightfor dynamic legged locomotion, in Proceeding of the IEEEInternational Conference on Robotics and Automation, Paris,2020, 2436–2442.109
  5. [5] M. Bjelonic, R. Grandia, O. Harley, C. Galliard, S.Zimmermann, and M. Hutter, Whole-body MPC and online gaitsequence generation for wheeled-legged robots, in Proceedingof the IEEE International Conference on Intelligent Robotsand Systems, Prague, 2021, 8388–8395.
  6. [6] X. Tian, H. Peng, and F. Zhou, A synthesis approach offast robust MPC with RBF-ARX model to nonlinear systemwith uncertain steady status information, Applied Intelligence,51(1), 2021, 1936.
  7. [7] G. Bledt, Regularized Predictive Control Framework forRobust Dynamic Legged Locomotion, Ph.D. Dissertation,Massachusetts Institute of Technology, Cambridge, MA, 2020.
  8. [8] J. Di Carlo, P.M. Wensing, B. Katz, G. Bledt, and S.Kim, Dynamic locomotion in the MIT Cheetah 3 throughconvex model-predictive control, in Proceeding of the IEEEInternational Conference on Intelligent Robots and Systems,Madrid, 2018, 1–9.
  9. [9] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, Highlydynamic quadruped locomotion via whole-body impulse controland model predictive control, 2019, ArXiv:1909.06586.
  10. [10] K.A. Hamed, J. Kim, and A. Pandala, Quadrupedal locomotionvia event-based predictive control and QP-based virtualconstraints, IEEE Robotics and Automation Letters, 5(3), 2020,4463–4470.
  11. [11] H. Zong, H. J. Zhang, and L. Jiang, Bionic Lightweight designof limb leg units for hydraulic quadruped robots by additivemanufacturing and topology optimization, Bio-Design andManufacturing, 7(1), 2024, 1–13.
  12. [12] Y. Han, G. Liu, and Z. Lu, A stability locomotion-controlstrategy for quadruped robots with center-of-mass dynamicplanning, Journal of Zhejiang University-SCIENCE A, 24(6),2023, 516–530.
  13. [13] C. Ding, L. Zhou, X. Rong, Y. Li, and J. Gu, A lateralimpact recovery method for quadruped robot with stepheight compensation, International Journal of Robotics andAutomation, 35(3), 2020, 199–208.
  14. [14] J. Jia and M. Zhang, Research progress and development trendof the safety of human-robot interaction technology, Journalof Mechanical Engineering, 56(3), 2020, 16–30.
  15. [15] Y. Zhu and B. Jin, Compliance control of a legged robotbased on improved adaptive control: Method and experiments,International Journal of Robotics and Automation, 5, 2016,366–373.
  16. [16] J. Ge, Z. Deng, and W. Li, Research progresses of robot grindingand polishing force compliance controls, China MechanicalEngineering, 32(18), 2021, 2217–2230.
  17. [17] Shi, N. Liu, G. and T. Zheng, Research progress and clinicalapplication of lower limb rehabilitation robot, Information andControl, 50(1), 2021, 43–53.
  18. [18] G. Bledt, M.J. Powell, and B. Katz, MIT Cheetah 3: Design andcontrol of a robust, dynamic quadruped robot, in Proceedingof the IEEE International Conference on Intelligent Robotsand Systems, Madrid, 2019, 2245–2252.
  19. [19] C. Gong, X. Wu, and L. Yuan, Control of quadruped robotbased on impedance and virtual model, Journal of SystemSimulation, 34(10), 2022, 2152–2161.
  20. [20] S. Meek, J. Kim, and M. Anderson, Stability of atrotting quadruped robot with passive, underactuated legs, inProceeding of the IEEE International Conference on Roboticsand Automation, Pasadena, CA, 2008, 347-351.
  21. [21] X. Zhang, H. Zheng, G. Xu, Z. Cheng, and L. Zhao, Abiological inspired quadruped robot: structure and control, inProceeding of the IEEE International Conference on Roboticsand Biomimetics-ROBIO, Hong Kong, 2005, 387–392.
  22. [22] C. Yang, Y. Jiang, and J. Na, Finite-time convergence adaptivefuzzy control for dual-arm robot with unknown kinematics anddynamics, IEEE Transactions on Fuzzy Systems, 27(3), 2018,574–588.
  23. [23] J. Di Carlo, Software and Control Design for the MIT CheetahQuadruped Robots, Ph.D. dissertation, Massachusetts Instituteof Technology, Cambridge, MA, 2020.
  24. [24] D. He, B. Ding, and S. Yu Review of fundamental propertiesand topics of model predictive control for nonlinear systems,Control Theory and Applications, 30(3), 2013, 274–287.
  25. [25] Z. Bian and X. Wang Control Algorithms for Quadruped Robots:Modelling, Control and Practice. (Norwalk, CT: MachineryIndustry Press, 2023).
  26. [26] V. Morlando, A. Teimoorzadeh, and F. Ruggiero, Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots, Mechanism and MachineTheory, 164, 2021, 13247–13267.
  27. [27] K. Hassan, Control of Nonlinear Systems, Upper Saddle River,NJ: Prentice Hall, 2002.

Important Links:

Go Back