OPTIMISATION OF SPORTS REHABILITATION TRAINING SYSTEM BASED ON COMPUTER VISION TECHNOLOGY AND ROBOT COLLABORATION MECHANISM

Haiyan Wang

References

  1. [1] Q. Liu, J. Zuo, C. Zhu, and S.Q. Xie, Design and controlof soft rehabilitation robots actuated by pneumatic muscles:State of the art, Future Generation Computer Systems, 113,2020, 620–634.
  2. [2] W. Qiao, L. Zhou, Z. Zhao, D. Liu, S. Li, J. An, X. Li, Y. Gao,P. Yang, J. Liu, Z.L. Wang, and J. Wang, A self-powered vectormotion sensor for smart robotics and personalised medicalrehabilitation, Nano Energy, 104, 2022107936.
  3. [3] S.H.H. Shah, A.S.T. Karlsen, M. Solberg, and I.A. Hameed,An efficient and lightweight multiperson activity recognitionframework for robot-assisted healthcare applications, ExpertSystems with Applications, 241, 2024, 122482.
  4. [4] J.S. Jensen, A. Holsgaard-Larsen, A.S. Sørensen, P.Aagaard,and J. Bojsen-Møller, Acute effects of robot-assisted bodyweight unloading on biomechanical movement patterns duringoverground walking, Journal of Biomechanics, 162, 2024,111862.
  5. [5] L.V. Winter, S. Panzer, and J. Konczak, Dyad motor learningin a wrist-robotic environment: Learning together is better thanlearning alone, Human Movement Science, 93, 2024, 103172.
  6. [6] M. Wu, J. Kim, and D. Gaebler-Spira, Improving trunk posturecontrol in children with CP through a cable-driven robotichippotherapy: A randomised controlled feasibility study, Gait& Posture, 113, 2024, 209–214.
  7. [7] L. Zhang, S. Guo, and F. Xi, Performance-based assistancecontrol for robot-mediated upper-limbs rehabilitation, Mecha-tronics, 89, 2023, 102919.
  8. [8] V. S. K. Delhi, R. Sankarlal, and A. Thomas, Detectionof personal protective equipment (PPE) compliance onconstruction site using computer vision based deep learningtechniques, Frontiers in Built Environment, 6, 2020, 136.
  9. [9] Y. R. Mileski, A.J. Souza, and H.J. Amorim, Developmentof a computer vision-based system for part referencingin CNC machining centers, Journal of the BrazilianSociety of Mechanical Sciences and Engineering, 44 (6),2022, 243.
  10. [10] Y.S. Cheng, B.Y. Zhou, Y.J. Chen, Y.C. Chen, X.Y. Ji, andW.Y. Xu, Evaluating compressive sensing on the securityof computer vision systems, ACM Transactions on SensorNetworks, 20 (3), 2024, 1–24.
  11. [11] H. Wang, Fuzzy comprehensive evaluation model of projectinvestment risk based on computer vision technology, Journalof Electrical and Computer Engineering, 2023, 2023, 5501265,https://doi.org/10.1155/2023/5501265.
  12. [12] A.A. Kroshchanka, V.A. Golovko, and M. Chodyka, Methodfor reducing neural-network models of computer vision, PatternRecognition and Image Analysis, 32 (2), 2022, 294–300.
  13. [13] N. Paramanandham, K. Rajendiran, F.G.J. Poovathy, Y.S.Premanand, S.R. Mallichetty, and P. Kumar, Pixel intensityresemblance measurement and deep learning based computervision model for crack detection and analysis, Sensors, 23 (6),2023, 2954.
  14. [14] Y. Lei, J. Li, Z. Li, Y. Cao, and H. Shan, Promptlearning in computer vision: A survey, Frontiers of Infor-mation Technology & Electronic Engineering, 25 (1), 2024,42–63.
  15. [15] S.V. Mahadevkar, B. Khemani, S. Patil, K. Kotecha, D.R.Vora, A. Abraham, and L.A. Gabralla, A review on machinelearning styles in computer vision-techniques and futuredirections, IEEE Access, 10, 2022, 107293–107329.
  16. [16] A. S. Xiong, T. Wu, and J. T. Jia, Design of areal-time monitoring system for electroencephalogram andelectromyography signals in cerebral palsy rehabilitation viawearable devices, Electronics, 13 (15), 2024, 2902.
  17. [17] S. Scataglini, Z. Van Dyck, V. Declercq, G. Van Cleemput,N. Struyf, and S. Truijen, Effect of music based therapyrhythmic auditory stimulation (RAS) using wearable devicein rehabilitation of neurological patients: A systematic review,Sensors, 23 (13), 2023, 5933.
  18. [18] E.A. Kringle, I.M.A. Setiawan, K. Golias, B. Parmanto,and E.R. Skidmore, Feasibility of an iterative rehabilitationintervention for stroke delivered remotely using mobile healthtechnology, Disability and rehabilitation. Assistive Technology,15 (8), 2020, 908–916.
  19. [19] Z. Liu, Q. Zheng, Y. Shi, L. Xu, Y. Zou, D. Jiang, B. Shi, X.Qu, H. Li, H. Ouyang, R. Liu, Y. Wu, Y. Fan, and Z. Li, Flexibleand stretchable dual mode nanogenerator for rehabilitationmonitoring and information interaction, Journal of MaterialsChemistry B, 8 (16), 2020, 3647–3654.
  20. [20] S. Shan and J. Zhou, Hand function rehabilitation trainingrobot based on Ycbcr and CNN, IEEE Access, 12, 2024,68999–69008.
  21. [21] Y. Dai, J. Wu, Y. Fan, J. Wang, J. Niu, F. Gu, and S. Shen,MSEva: A musculoskeletal rehabilitation evaluation systembased on EMG signals, ACM Transactions on Sensor Networks,19 (1), 2023, 1–23.
  22. [22] J.F. Kong, Design and optimisation of physical educationassessment index system based on big data analysis, IEEEAccess, 12, 2024, 73238–73246.
  23. [23] P. Sun and L. Gu, Fuzzy knowledge graph system for artificialintelligence-based smart education, Journal of Intelligent &Fuzzy Systems, 40 (2), 2021, 2929–2940.
  24. [24] M. Jovanovic and M. Campbell, Generative artificial intel-ligence: Trends and prospects, Computer, 55 (10), 2022,107–112.
  25. [25] H. Vijayan, M. Subramaniam, and K. Sathiyasekar, A HybridIntelligent Clustering Model for Tackling Incomplete MixedData Using Heuristic Algorithm with Artificial Intelligence,Cybernetics and Systems, 55(5), 2024, 1005–1040.
  26. [26] F. Amin, A. Waris, J. Iqbal, S.O. Gilani, M.Z. Rehman, S.Mushtaq, N.B. Khan, M.I. Khan, M. Jamee, and N. Tamam,Maximizing stroke recovery with advanced technologies: Acomprehensive assessment of robot-assisted, EMG-Controlledrobotics, virtual reality, and mirror therapy interventions,Results in Engineering, 21, 2024, 101725.
  27. [27] L. Ejnisman, E. Antonioli, L. Cintra, P.G. de Oliveira Souza,L.A.V. Costa, and M. Lenza, Robot-assisted knee arthroplasty:Analyzing the learning curve and initial institutional experi-ence, Computational and Structural Biotechnology Journal, 24,2024, 343–349.
  28. [28] S.S. Kumaran, S.J.S. Chelladurai, K.B.B. Narayanan, and T.A.Selvan. Prediction of received signal strength using the fuzzylogic controller for localisation of sensors in mobile robots,International Journal of Robotics and Automation, 39(4), 2024,302–311.
  29. [29] Y. He, Y. Xu, M. Hai, Y. Feng, P. Liu, Z. Chen, and W.Duan, Exoskeleton-Assisted Rehabilitation and Neuroplasticityin Spinal Cord Injury, World Neurosurgery, 185, 2024,45–54.
  30. [30] W. Ling, Energy optimisation of a wearable lower limbrehabilitation robot based on deep learning, Sustainable EnergyTechnologies and Assessments, 56, 2023, 103123.
  31. [31] L. Dongtai, Y. Feng, Y. Shengye, T. Min, W. Liangda, J. Diand L. Vladareanu. Kinematic analysis of the variable heightrotating mechanism for end-traction upper limb rehabilitationrobot, International Journal of Robotics and Automation,38(no.2), 2023, 85–96.346

Important Links:

Go Back