DYNAMIC BIOINSPIRED NEURAL NETWORK FOR MULTI-ROBOT FORMATION CONTROL IN UNKNOWN ENVIRONMENTS

Jianjun Ni, Xiaofang Yang, Junfeng Chen, and Simon X. Yang

References

  1. [1] R.M. Murray, Recent research in cooperative control of multivehicle systems, Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control, 129(5), 2007, 571–583.
  2. [2] G. Lee and N.Y. Chong, Decentralized formation control for small-scale robot teams with anonymity, Mechatronics, 19(1), 2009, 85–105.
  3. [3] T. Dierks, B. Brenner, and S. Jagannathan, Discrete-time optimal control of nonholonomic mobile robot formations using linearly parameterized neural networks, International Journal of Robotics and Automation, 26(1), 2011, 76–85.
  4. [4] J. Ni and S.X. Yang, A fuzzy-logic based chaos GA forcooperative foraging of multi-robots in unknown environments, International Journal of Robotics and Automation, 27(1), 2012, 15–30.
  5. [5] S.S. Ge and C.-H. Fua, Queues and artificial potential trenches for multirobot formations, IEEE Transactions on Robotics, 21(4), 2005, 646–656.
  6. [6] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti,Sliding-mode formation control for cooperative autonomousmobile robots, IEEE Transactions on Industrial Electronics,55(11), 2008, 3944–3953.
  7. [7] T. Dierks and S. Jagannathan, Neural network control of mobile robot formations using RISE feedback, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 39(2), 2009, 332–347.
  8. [8] B. Ranjbar-Sahraei, F. Shabaninia, A. Nemati, and S.-D.Stan, A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems, IEEE Transactions on Industrial Electronics, 59(8), 2012, 3124–3134.
  9. [9] H. Chen, D. Sun, J. Yang, and J. Chen, Localization formultirobot formations in indoor environment, IEEE/ASMETransactions on Mechatronics, 15(4), 2010, 561–574.
  10. [10] S. Garrido, L. Moreno, and P.U. Lima, Robot formation motion planning using Fast Marching, Robotics and Autonomous Systems, 59(9), 2011, 675–683.
  11. [11] Y. Wang and Y. Chen, Multiple-obstacle avoidance in role assignment of formation control, International Journal of Robotics and Automation, 27(2), 2012, 177–184.
  12. [12] H. Liang, J. Wang, and Z. Sun, Robust decentralized coordinated attitude control of spacecraft formation, Acta Astronautica, 69(5–6), 2011, 280–288.
  13. [13] K. Do and J. Pan, Nonlinear formation control of unicycle-type mobile robots, Robotics and Autonomous Systems, 55(3), 2007, 191–204.
  14. [14] J. Chen, D. Sun, J. Yang, and H. Chen, Leader–followerformation control of multiple non-holonomic mobile robotsincorporating a receding-horizon scheme, International Journal of Robotics Research, 29(6), 2010, 727–747.
  15. [15] M. Mesbahi and F. Hadaegh, Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching, Journal of Guidance Control and Dynamics, 24(2), 2001, 369–377.
  16. [16] M. Lewis and K. Tan, High precision formation control of mobile robots using virtual structures, Autonomous Robots, 4(4), 1997, 387–403.
  17. [17] B.S. Park, J.B. Park, and Y.H. Choi, Adaptive formation control of electrically driven nonholonomic mobile robots with limited information, IEEE Transactions on Systems, Man and Cybernetics, Part B, 41(4), 2011, 1061–75.
  18. [18] M. Lei, S. Zhou, X. Yang, and G. Yin, Complex formation control of large-scale intelligent autonomous vehicles, Mathematical Problems in Engineering, 2012, 19, Article ID 857512.
  19. [19] L. Yang, Z. Cao, C. Zhou, L. Cheng, and M. Tan, Formation control and switching for multiple robots in uncertain environments, International Journal of Robotics and Automation, 25(3), 2010, 240–249.
  20. [20] H. Zhang and P.N. Pathirana, Optimization-based formation of autonomous mobile robots, Robotica, 29(4), 2011, 515–525.
  21. [21] J. Bae and Y. Kim, Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks, Journal of The Franklin Institute-Engineering and Applied Mathematics, 349(2), 2012, 578–603.
  22. [22] S. Yang and M. Meng, Neural network approaches to dynamic collision-free trajectory generation, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 31(3), 2001, 302–318.
  23. [23] M. Wang and J. Liu, Fuzzy logic-based real-time robot navigation in unknown environment with dead ends, Robotics and Autonomous Systems, 56(7), 2008, 625–643.
  24. [24] A. Viguria and A. Howard, An integrated approach for achieving multirobot task formations, IEEE/ASME Transactions on Mechatronics, 14(2), 2009, 176–186.
  25. [25] A. Zhu and S.X. Yang, A neural network approach to dynamic task assignment of multi-robots, IEEE Transactions on Neural Network, 17(5), 2006, 1278–1287.
  26. [26] S.X. Yang and M. Meng, An efficient neural network approach to dynamic robot motion planning, Neural Networks, 13(2), 2000, 1431–148.
  27. [27] H. Li, S.X. Yang, and M.L. Seto, Neural-network-based path planning for a multirobot system with moving obstacles, IEEE Transactions on Systems, Man, and Cybernetics, Part C, 39(4), 2009, 410–419.
  28. [28] B. Sun, D. Zhu, F. Ding, and S.X. Yang, A novel tracking control approach for unmanned underwater vehicles based on bio-inspired neurodynamics, Journal of Marine Science and Technology (Japan), 18(1), 2013, 63–74.
  29. [29] J. Ni, C. Wang, X. Fan, and S.X. Yang, A bioinspired neural model based extended Kalman filter for robot SLAM,Mathematical Problems in Engineering, 2014, Article number:905826.
  30. [30] M. Pulido, O. Castillo, and P. Melin, Genetic optimization of ensemble neural networks for complex time series prediction of the mexican exchange, International Journal of Innovative Computing, Information and Control, 9(10), 2013, 4151–4166.
  31. [31] Z. Wang, G. Zhai, X. Huang, and D. Yi, Combination forecasting method for storage reliability parameters of aerospace relays based on grey-artificial neural networks, InternationalJournal of Innovative Computing, Information and Control,9(9), 2013, 3807–3816.
  32. [32] J. Ni and S.X. Yang, Bioinspired neural network for real-timecooperative hunting by multirobots in unknown environments,IEEE Transactions on Neural Networks, 22(12), 2011, 2062–2077.
  33. [33] M.H. Amoozgar, K. Alipour, and S.H. Sadati, A fuzzy logic-based formation controller for wheeled mobile robots, IndustrialRobot, 38(3), 2011, 269–281.
  34. [34] Y. Chen and Y. Wang, A generalized framework of dynamic roleassignment for robot formation control, International Journalof Control, Automation and Systems, 8(6), 2010, 1288–1295.

Important Links:

Go Back