NAVIGATION OF MOBILE ROBOT IN UNKNOWN ENVIRONMENT BASED ON T–S NEURO-FUZZY SYSTEM

Tao Huang, Ping Yang, Kaiming Yang, and Yu Zhu

References

  1. [1] I. Engedy and G. Horvath, Artificial neural networkbased mobile robot navigation (Budapest, Hungary, 2009),241–246.
  2. [2] M. Sekiguchi, S. Nagata, and K. Asakawa, Behavior control fora mobile robot by multi-hierarchical neural network (Scottsdale,AZ, USA, 1989), 1578–1583.
  3. [3] W. Wahab, Autonomous mobile robot navigation using a dualartificial neural network (Singapore, Singapore, 2009).
  4. [4] S.X. Yang and M. Meng, Efficient neural network method forreal-time motion planning with safety consideration, Roboticsand Autonomous Systems, 32, 2000, 115–128.
  5. [5] S.X. Yang and M. Meng, Neural network approaches to dy-namic collision-free trajectory generation, IEEE Transactionson Systems, Man, and Cybernetics, Part B: Cybernetics, 31,2001, 302–318.
  6. [6] S.X. Yang and M.Q.H. Meng, Real-time collision-free motionplanning of a mobile robot using a neural dynamics-basedapproach, IEEE Transactions on Neural Networks, 14, 2003,1541–1552.
  7. [7] A. El dessouky and M. Tarbouchi, Fuzzy model referencelearning control of induction motor via genetic algorithms,Presented at the 27th Annual Conference of the IEEE, 2001.
  8. [8] E. Aguirre and A. Gonzalez, Fuzzy behaviors for mobile robotnavigation: Design, coordination and fusion, InternationalJournal of Approximate Reasoning, 25, 2000, 255–289.
  9. [9] S. Mitra and S.K. Pal, Fuzzy if-organization, inferencingand rule generation, IEEE Transactions on Systems, Manand Cybernetics, Part A: Systems and Humans, 26(5), 1996,608–620.
  10. [10] O. Obe and L. Dumitrache, Fuzzy control of autonomousmobile robot, UPB Scientific Bulletin, Series C: ElectricalEngineering, 72, 2010, 173–186.
  11. [11] H. Surmann, J. Huser, and L. Peters, Fuzzy system for indoormobile robot navigation (Yokohama, Japan, 1995), 83–88.
  12. [12] N. Yousfi, C. Rekik, M. Jallouli, and N. Derbel, Optimized fuzzycontroller for mobile robot navigation a cluttered environment(Amman, Jordan, 2010).
  13. [13] F. Abdessemed, K. Benmahammed, and E. Monacelli, A fuzzy-based reactive controller for a non-holonomic mobile robot,Robotics and Autonomous Systems, 47, 2004, 31–46.
  14. [14] K. He, Y. Gao, and H. Sun, A fuzzy neural network basedon T–S model for mobile robots to avoid obstacles (Wuhan,China, 2008), 1127–1134.
  15. [15] K. He, H. Sun, and W. Cheng, Application of fuzzy neuralnetwork based on T–S model for mobile robot to avoid obstacles(Chongqing, China, 2008), 8277–8281.
  16. [16] S. Horikawa, T. Furahashi, and Y. Uchikawa, On fuzzy mod-elling using fuzzy neural networks with BP algorithm, IEEETransactions on Neural Networks, 3, 1992, 801–806.
  17. [17] A. Zhu and S.X. Yang, Neurofuzzy-based approach to mobilerobot navigation in unknown environments, IEEE Transactionson Systems, Man and Cybernetics Part C: Applications andReviews, 37, 2007, 610–621.
  18. [18] S.F. Desouky and H.M. Schwartz, Self-learning fuzzy logiccontrollers for pursuit-evasion differential games, Robotics andAutonomous Systems, 59, 2011, 22–33.
  19. [19] D. Nauck, F. Klawonn, and R. Kruse, Foundations of neuro-fuzzy systems (New York, NY: John Wiley & Sons, Inc.,1997).
  20. [20] S. Mitra and Y. Hayashi, Neuro-fuzzy rule generation: Surveyin soft computing framework, IEEE Transactions on NeuralNetworks, 11, 2000, 748–768.
  21. [21] G. Nicolas Marichal, A. Hernandez, L. Acosta, and E. JoseGonzalez, A neuro-fuzzy system for extracting environmentfeatures based on ultrasonic sensors, Sensors, 9, 2009, 10023–10043.
  22. [22] T. Takagi and M. Sugeno, Derivation of fuzzy control rules fromhuman operator’s control actions (Marseille, France, 1984),55–60.
  23. [23] J. Dong, Y. Wang, and G.-H. Yang, H and mixed H2/H controlof discrete-time T–S fuzzy systems with local nonlinear models,Fuzzy Sets and Systems, 164, 2011, 1–24.
  24. [24] J.T. Economou, A. Tsourdos, and B.A. White, Takagi–Sugenomodel synthesis of a quasi-linear parameter varying mobilerobot (Lausanne, Switzerland, 2002), 2103–2108.
  25. [25] M. Han, Y. Sun, and Y. Fan, An improved fuzzy neural networkbased on T–S model, Expert Systems with Applications, 34,2008, 2905–2920.
  26. [26] C.C. Shing, P.L. Hsu, and S.S. Yen, T–S fuzzy path controllerdesign for the omnidirectional mobile robot (Paris, France,2006), 4142–4147.
  27. [27] L.-X. Wang, J.M. Mendel, Fuzzy basis functions, universalapproximation, orthogonal least squares learning, IEEE Trans-actions on Neural Networks, 3, 1992, 807–814.
  28. [28] A. Blanco, M. Delgado, I. Requena, A learning procedureto identify weighted rules by neural network, Fuzzy Sets andSystems, 69, 1995, 29–36.
  29. [29] G.N. Marichal, L. Acosta, L. Moreno, J.A. Mendez, J.J.Rodrigo, and M. Sigut, Obstacle avoidance for a mobile robot:A neuro-fuzzy approach, Fuzzy Sets and Systems, 124, 2001,171–179.

Important Links:

Go Back