DYNAMIC COMMUNITY DETECTION-DRIVEN FRAMEWORK FOR COLLABORATIVE PLANNING AND ADAPTIVE CONTROL OF UAV SWARMS

Haonan Liu, Xiaoyu Li,Li Jin, Wen Shi, Yang Bai, Linhao Zhang, and Hongqi Wang

References

  1. [1] Z. Guoqi, B. Yu, L. Chunlei, C. Kai, and Y. Huanyin,Multitask assignment of swarming UAVs based on improvedPSO, International Journal of Robotics and Automation, 36(3),2021, 188.
  2. [2] H. T. Do, H. T. Hua, M. T. Nguyen, C. V. Nguyen, H. T. T.Nguyen, H. T. Nguyen, and N. T. Nguyen, Formation controlalgorithms for multiple-UAVs: A comprehensive survey, EAIEndorsed Transactions on Industrial Networks and IntelligentSystems, 8(27), 2021, 170230.
  3. [3] X. Ma, W. Dong, and B. Li, Comprehensive fault-tolerantcontrol of leader–follower unmanned aerial vehicles (UAVs)formation, International Journal of Robotics and Automation,34(6), 2019, 195.
  4. [4] Y. Yan, Z. Lv, J. Yuan, and S. Zhang, Obstacle avoidancefor multi-UAV system with optimised artificial potential fieldalgorithm, International Journal of Robotics and Automation,36, 2021, 7.
  5. [5] A. Bakshi, S. Parthasarathy, and K. Srinivasan, Semi-supervised community detection using structure and size, inProceeding of IEEE International Conference on Data Mining,2018, 869–874.
  6. [6] Y. Zhang, Y. Xiong, Y. Ye, T. Liu, W. Wang, Y. Zhu, andP. S. Yu, SEAL: Learning heuristics for community detectionwith generative adversarial networks, in Proceedings of the26th ACM SIGKDD International Conference on KnowledgeDiscovery & Data Mining, 2020, 1103–1113.
  7. [7] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J.Tang, Self-supervised learning: generative or contrastive, IEEETransactions on Knowledge and Data Engineering, 35( 1), 2021,857–876.
  8. [8] L Ni, J Ge, Y Zhang, W Luo, and V. S. Sheng, Semi-supervisedlocal community detection, IEEE Transactions on Knowledgeand Data Engineering, 36, 2033, 1–17.
  9. [9] X. Wu, Y. Xiong, Y. Zhang, Y. Jiao, C. Shan, Y. Sun, Y.Zhu, and P. S. Yu, CLARE: A semi-supervised communitydetection algorithm. in Proceedings of the 28th ACM SIGKDDConference on Knowledge Discovery and Data Mining, 2022,2059–2069.
  10. [10] S. Min, C. Rhim, and S. Chang, An ANN-based intergratedmodel for autonomous UAV flight control considering externalforces, International Journal of Robotics and Automation,39(5), 2024, 362–378.
  11. [11] Y. Wang, J. Cao, Z. Bu, J. Wu, and Y. Wang, Dual structuralconsistency preserving community detection on social networks,IEEE Transactions on Knowledge and Data Engineering, 35,2023, 11301–11315.
  12. [12] H. Roghani and A. Bouyer, A fast local balanced label diffusionalgorithm for community detection in social networks, IEEETransactions on Knowledge and Data Engineering, 35, 2023,5472–5484.
  13. [13] P. G. Sun, X. Wu, Y. Quan, and Q. Miao, Rearranging ‘indi-visible’ blocks for community detection, IEEE Transactionson Knowledge and Data Engineering, 35, 2023, 6252–6263.
  14. [14] G. A Bilodeau and R. Bergevin, Matching graphs with fuzzyattributes in machine vision, International Journal of Roboticsand Automation, 20(1), 2005, 50-59.
  15. [15] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C.Zhang, Adversarially regularised graph autoencoder for graphembedding, in Proceedings of the Twenty-Seventh InternationalJoint Conference on Artificial Intelligence, 2018, 2609–2615.
  16. [16] Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, and J.Tang, GraphMAE: Self-supervised masked graph autoencoders,in Proceedings of the 28th ACM SIGKDD Conference onKnowledge Discovery and Data Mining, 2022, 594–604.
  17. [17] K. Hassani and A. H. Khasahmadi, Contrastive multi-view representation learning on graphs, in Proceedingof International Conference on Machine Learning, 2020,4116–4126.
  18. [18] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, Deep graphcontrastive representation learning, 2020, arXiv:2006.04131.
  19. [19] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, Graphcontrastive learning with adaptive augmentation, in Proceedingsof the Web Conference, 2021, 2069–2080.
  20. [20] L. Lin, J. Chen, and H. Wang, Spectral augmentation forself-supervised learning on graphs. in Proceeding of EleventhInternational Conference on Learning Representations, 2023,1–27.
  21. [21] S. Thakoor, C. Tallec, M. G. Azar, M. Azabou, E. L. Dyer, R.Munos, P. Velickovic, and M. Valko, Large-scale representationlearning on graphs via bootstrapping, in Proceeding of TenthInternational Conference on Learning Representations, 2022,1–21.
  22. [22] H. Zhang, Q. Wu, J. Yan, D. Wipf, and P. S. Yu, Fromcanonical correlation analysis to self-supervised graph neuralnetworks, in Proceeding of Advances in Neural InformationProcessing Systems, 2021, 76–89.
  23. [23] N. Lee, J. Lee, and C. Park, Augmentation-free self-supervisedlearning on graphs, in Proceedings of the AAAI Conference onArtificial Intelligence, 2022, 7372–7380.
  24. [24] P. Huang, M. Xu, J. Zhu, L. Shi, F. Fang, and D. Zhao,Curriculum reinforcement learning using optimal transportvia gradual domain adaptation, in Proceeding of Advances inNeural Information Processing Systems 35: Annual Conferenceon Neural Information Processing Systems (NeurIPS 2022),2022, 1–15.
  25. [25] L. Xu, H. Sun, and Y. Liu , Learning with batch-wise optimaltransport loss for 3D shape recognition, in Proceeding ofIEEE/CVF Conference on Computer Vision and PatternRecognition (CVPR), 2019, 3328–3337.
  26. [26] X. Gu, L. Yang, J. Sun, and Z. Xu, Optimal transport-guided conditional score-based diffusion model, in Proceedingof Advances in Neural Information Processing Systems 36:Annual Conference on Neural Information Processing Systems(NeurIPS 2023), 2023, 1–13.
  27. [27] T. Adrai, G. Ohayon, M. Elad, and T. Michaeli, Deepoptimal transport: A practical algorithm for photo-realisticimage restoration, in Proceeding of Advances in NeuralInformation Processing Systems 36: Annual Conference onNeural Information Processing Systems (NeurIPS 2023), 2023,1–15.
  28. [28] J. Tang, W. Zhang, J. Li, K. Zhao, F. Tsung, and J. Li, Robustattributed graph alignment via joint structure learning andoptimal transport, in Proceeding of 39th IEEE InternationalConference on Data Engineering (ICDE 2023), Anaheim, CA,2023, 1638–1651.
  29. [29] Z. Lou, J. You, C. Wen, A. Canedo, and J. Leskovec, Neuralsubgraph matching, 2020, arXiv:2007.03092.
  30. [30] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How powerfulare graph neural networks? in Proceeding of 7th InternationalConference on Learning Representations (ICLR 2019), NewOrleans, LA, 2019, 1–17.
  31. [31] J. Zhang, W. Zhong, and P. Ma, A review on moderncomputational optimal transport methods with applications inbiomedical research, 2020, arXiv:2008.02995.
  32. [32] C. Cai and Y. Wang, A simple yet effective baseline for non-attributed graph classification, 2018, arXiv:1811.03508.
  33. [33] L. Chen, Z. Gan, Y. Cheng, L. Li, L. Carin, and J. Liu, Graphoptimal transport for cross-domain alignment, in Proceedingsof the 37th International Conference on Machine Learning,2020, 1542–1553.
  34. [34] O. Shchur and S. G¨unnemann, Overlapping com-munity detection with graph neural networks, 2019,arXiv:1909.12201.
  35. [35] Z. Chen, H. Mao, H. Li, W. Jin, H. Wen, X. Wei, S. Wang, D.Yin, W. Fan, H. Liu, and J. Tang, Exploring the potential oflarge language models (LLMs) in learning on graphs, SIGKDDExplorations, 25(2), 2023, 42–61.
  36. [36] Q. Cappart, D. Ch´etelat, E. B. Khalil, A. Lodi, C. Morris,and P. Velickovic, Combinatorial optimisation and reasoningwith graph neural networks, in Proceedings of the ThirtiethInternational Joint Conference on Artificial Intelligence(IJCAI), 2021, 4348–4355.
  37. [37] T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly,Metrics for community analysis: A survey, ACM ComputingSurveys, 4, 2017, 1–37.
  38. [38] A. F. McDaid, D. Greene, and N. Hurley, Normalisedmutual information to evaluate overlapping community findingalgorithms, 2017, arXiv:1110.2515.10
  39. [39] T. N. Kipf and M. Welling, Semi-supervised clas-sification with graph convolutional networks, 2016,arXiv:1609.02907.
  40. [40] W. Hamilton, Z. Ying, and J. Leskovec, Inductive rep-resentation learning on large graphs, in Proceeding ofAdvances in Neural Information Processing Systems, 2017,1–11.
  41. [41] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P.Li`o, and Y. Bengio, Graph attention networks, 2017,arXiv:1710.10903.
  42. [42] Y. Jia, Q. Zhang, W. Zhang, and X. Wang, CommunityGAN:Community detection with generative adversarial nets, inProceeding of the World Wide Web Conference, 2019, 784–794.
  43. [43] H. R. Patel and V. A. Shah, Shadowed type-2 fuzzy setsin dynamic parameter adaption in cuckoo search and flowerpollination algorithms for optimal design of fuzzy fault-tolerantcontrollers, Mathematical and Computational Applications,27(6), 2022, 89.[44H. R. Patel and V. A. Shah, A metaheuristic approach forinterval type-2 fuzzy fractional order fault-tolerant controllerfor a class of uncertain nonlinear system, Automatika:ˇCasopis za Automatiku, Mjerenje, Elektroniku, Raˇcunarstvo IKomunikacije, 63(4), 2022, 656–675.
  44. [44] H. R. Patel and V. A. Shah, Type-2 fuzzy logic applicationsdesigned for active parameter adaptation in metaheuristicalgorithm for fuzzy fault-tolerant controller, InternationalJournal of Intelligent Computing and Cybernetics, 16(2), 2022,198–222.
  45. [45] H. R. Patel, Fuzzy-based metaheuristic algorithm foroptimization of fuzzy controller: fault-tolerant control appli-cation, International Journal of Intelligent Computing andCybernetics, 15(4), 2022, 599–624.
  46. [46] H. R. Patel and V. A. Shah, Stable fuzzy controllers via LMIapproach for non-linear systems described by type-2 T–S fuzzymodel, International Journal of Intelligent Computing andCybernetics, 14(3), 2021, 509–531.
  47. [47] H. R. Patel and V. A. Shah, Application of metaheuristicalgorithms in interval type-2 fractional order fuzzy TIDcontroller for nonlinear level control process under actuator andsystem component faults, International Journal of IntelligentComputing and Cybernetics, 14(1), 2021, 33–53.
  48. [48] H. R. Patel, S. K. Raval, and V. A. Shah, A novel designof optimal intelligent fuzzy TID controller employing GAfor nonlinear level control problem subject to actuator andsystem component fault, International Journal of IntelligentComputing and Cybernetics, 14(1), 2021, 17–32.
  49. [49] B. Bede, M. Ceberio, M. De Cock, and V. Kreinovich, FuzzyInformation Processing. (Cham: Springer, 2022).
  50. [50] H. R. Patel and V. A. Shah, Comparative analysis betweentwo fuzzy variants of harmonic search algorithm: Fuzzy faulttolerant control application, IFAC-PapersOnLine, 55(7), 2022,507–512.
  51. [51] H. R. Patel and V. A. Shah, General type-2 fuzzy logic systemsusing shadowed sets: a new paradigm towards fault-tolerantcontrol, in Proceeding of Australian & New Zealand ControlConference (ANZCC), 2021, 116–121.
  52. [52] H. R. Patel and V. A. Shah, Fuzzy logic based metaheuristicalgorithm for optimisation of type-1 fuzzy controller: Fault-tolerant control for nonlinear system with actuator fault, IFAC-PapersOnLine, 55(1), 2022, 715–721.
  53. [53] S. Raval, H. R. Patel, V. Shah, U. C. Rathore, and P. P. Kotak,Fault-tolerant control using optimised neurons in feed-forwardbackpropagation neural network-for MIMO uncertain system:A metaheuristic approach, in Proceeding of InternationalConference on Intelligent and Fuzzy Systems, 2023, 597–609.
  54. [54] H. R. Patel and V. A. Shah, Decentralised stable and robustfault-tolerant PI plus fuzzy control of MIMO systems: aquadruple tank case study, International Journal on SmartSensing and Intelligent Systems, 12(1), 2019, 1.
  55. [55] H. R. Patel, Metaheuristic optimisation algorithm for optimaldesign of type-2 fuzzy controller, International Journal ofApplied Evolutionary Computation (IJAEC), 13(1), 2022,1–15.
  56. [56] H. R. Patel, Optimal intelligent fuzzy TID controller foran uncertain level process with actuator and system faults:population-based metaheuristic approach, Franklin Open, 4,2023, 100038.
  57. [57] H. R. Patel and V. A. Shah, Simulation and comparison betweenfuzzy harmonic search and differential evolution algorithm:Type-2 fuzzy approach, IFAC-PapersOnLine, 55(16), 2022,412–417.

Important Links:

Go Back