A NOVEL JELLYFISH- AND BUTTERFLY-INSPIRED UNDERWATER MICROROBOT WITH PECTORAL FINS

Liwei Shi, Shuxiang Guo, and Kinji Asaka

References

  1. [1] A. Villanueva, K. Joshi, J. Blottman, and S. Priya, A bio-inspired shape memory alloy composite (BISMAC) actuator, Smart Materials and Structures, 19, 025013, 2010, 1–17.
  2. [2] S. Yeom and I. Oh, A biomimetic jellyfish robot based onionic polymer metal composite actuators, Journal of Smart Materials and Structures, 18, 085002, 2009, 1–16.
  3. [3] A. Villanueva, S. Priya, C. Anna, C. Smith, Robojelly bell kinematics and resistance feedback control, Proc. 2010 IEEE Int. Conf. on Robotics and Biomimetics, Tianjin, China, 2010, 1124–1129.
  4. [4] S. Guo, Y. Okuda, W. Zhang, X. Ye, and K. Asaka, The development of a hybrid underwater micro biped robot, Journal of Applied Bionics and Biomechanics, 3 (3), 2006, 143–150.
  5. [5] W. Yim, J. Lee, and K.J Kim, An artificial muscle actuator for biomimetic underwater propulsors, Journal of Bioinspiration and Biomimetics, 2 (2), 2007, S31–S41.
  6. [6] B. Gao, S. Guo, Dynamic mechanics and electric field analysis of an ICPF actuated fish-like underwater microrobot, Proc. of the IEEE Int. Conf. on Automation and Logistics, Chongqing, China, 2011, 330–335.
  7. [7] P. Brunetto, L. Fortuna, S. Graziani, and S. Strazzeri, A model of ionic polymer–metal composite actuators in underwater operations, Journal of Smart Material and Structures, 17 (2), 2008, 25–29.
  8. [8] Q. Pan, S. Guo, T. Okada, A novel hybrid wireless microrobot, International Journal of Mechatronics and Automation, 1 (1), 2011, 60–69.
  9. [9] S. Heo, T. Wiguna, H. Park, and N. Goo, Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators, Journal of Bionic Engineering, 4 (3), 2007, 151–158.
  10. [10] L. Shi, S. Guo, and K. Asaka, A bio-inspired underwater microrobot with compact structure and multifunctional locomotion, Proc. 2011 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM 2011), Budapest, Hungary, 2011, 203–208.
  11. [11] A. Villanueva, C. Smith, and S. Priya, A biomimetic robotic jellyfish (robojelly) actuated by shape memory alloy composite actuators, Bioinspiration & Biomimetics, 6 (3), 036004, 2011, 1–16.
  12. [12] W. Zhang, S. Guo, and K. Asaka, Development of a novel type of an underwater microrobot with biomimetic locomotion, Journal of Applied Bionics and Biomechanics, 3 (3), 2006, 245–252.
  13. [13] L. Shi, S. Guo, and K. Asaka, A novel jellyfish-like biomimatic microrobot, Proc. 2010 Int. Conf. on Complex Medical Engineering, Gold Coast, Australia, 2010, 277–281.
  14. [14] N. Kamamichi, M. Yamakita, K. Asaka, and Z. Luo, A snake-like swimming robot using IPMC actuator/sensor, Proc. 2006 IEEE Int. Conf. on Robotics and Automation, Orlando, FL, 2006, 1812–1817.
  15. [15] B. Gao, S. Guo, and X. Ye, Motion-control Analysis of ICPF-actuated underwater biomimetic microrobots, International Journal of Mechatronics and Automation, 1 (2), 2011, 79–89.
  16. [16] Y.H. Teh and R. Featherstone, An architecture for fast and accurate control of shape memory alloy actuators, International Journal of Robotics Research, 27 (5), 2008, 595–611.
  17. [17] Y. Takeda, H. Cho, and T. Yamamoto, Control characteristics of shape memory alloy actuator using resistance feedback control method, Advances in Science and Technology, 59, 2008, 178–183.
  18. [18] G.B. Song, N. Ma, and H.-J. Lee, Position estimation and control of SMA actuators based on electrical resistance measurement, Smart Structures and Systems, 3 (2), 2007, 189–200.
  19. [19] T. Bajcar, V. Malačič, A. Malej, and B. Širok, Kinematic properties of the jellyfish Aurelia sp., Hydrobiologia, 616, 2009, 279–289.
  20. [20] J. Dabiri1, S. Colin, J. Costello, and M. Gharib, Flow patterns generated by oblate medusan jellyfish: Field measurements and laboratory analyses, The Journal of Experimental Biology, 208, 2005, 1257–1265.
  21. [21] B. Behkam and M. Sitti, Design methodology for biomimetic propulsion of miniature swimming robots, Journal of Dynamic Systems, Measurement, and Control, 128 (1), 2006, 36–43.
  22. [22] Z. Wang, G. Hang, J. Li, Y. Wang, and K. Xiao, A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin, Journal of Sensors and Actuators A: Physical, 144 (2), 2008, 354–360.
  23. [23] L. Shi, S. Guo, and K. Asaka, A novel butterfly-inspired underwater microrobot with pectoral fins, Proc. 2011 IEEE Int. Conf. on Mechatronics and Automation, Beijing, China, 2011, 853–858.
  24. [24] X. Ye, Y. Hu, S. Guo, and Y. Su, Driving mechanism of a new jellyfish-like microrobot, Proc. 2008 IEEE Int. Conf. on Mechatronics and Automation, Takamatsu, Japan, 2008,563–568.
  25. [25] S. Lee, K. Kim, and I. Park, Modeling and experiment of a muscle-like linear actuator using an ionic polymer–metal composite and its actuation characteristics, Journal of Smart Material and Structures, 16 (3), 2007, 583–588.
  26. [26] L. Shi, S. Guo, and K. Asaka, Development of a new jellyfish-type underwater microrobot, International Journal of Robotics and Automation, 26 (2), 2011, 229–241.
  27. [27] L. Shi, S. Guo, and K Asaka, A novel multifunctional underwater microrobot, Proc. 2010 IEEE Int. Conf. on Robotics and Biomimetics, Tianjin, China, 2010, 873–878.

Important Links:

Go Back