Joo H. Kim, Dustyn P. Roberts, John Meusch, and Salam Rahmatalla
[1] Q. Zou and J. Yang, Motion synthesis for a digital pregnant woman multibody system, International Journal of Robotic Automation, 28(2), 2013. [2] B. Howard and J. Yang, Calculating support reaction forces in physics-based seated posture prediction for pregnant women, International Journal of Robotic Automation, 27(3), 2012. [3] M.G. Choi, J. Lee, and S.Y. Shin, Planning biped locomotion using motion capture data and probabilistic roadmaps, ACM Transactions on Graphics, 22(2), 2003, 182–203. [4] D.G. Thelen and F.C. Anderson, Using computed muscle control to generate forward dynamic simulations of human walking from experimental data, Journal of Biomechanics, 39(6), 2006, 1107–1115. [5] C. Chevallereau and Y. Aoustin, Optimal reference trajectories for walking and running of a biped robot, Robotica, 19(5), 2001, 557–569. [6] P.E. Gill, W. Murray, and M.A. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Journal of Optimization, 12(4), 2002, 979–1006. [7] J.H. Kim, J. Yang, and K. Abdel-Malek, A novel formulation for determining joint constraint loads during optimal dynamic motion of redundant manipulators in DH representation, Multibody System Dynamics, 19(4), 2008, 427–451. [8] X. Mu and Q. Wu, Synthesis of a complete sagittal gait cycle for a five-link biped robot, Robotica, 21(05), 2003, 581–587. [9] T. Saidouni and G. Bessonnet, Generating globally optimised sagittal gait cycles of a biped robot, Robotica, 21(02), 2003, 199–210. [10] Y. Xiang, H.-J. Chung, J.H. Kim, R. Bhatt, S. Rahmatalla, J. Yang, T. Marler, J.S. Arora, and K. Abdel-Malek, Predictive dynamics: An optimization-based novel approach for human motion simulation, Structural and Multidisciplinary Optimization, 41(3), 2010, 465–479. [11] H.R. Yamasaki, H. Kambara, and Y. Koike, Dynamic optimization of the sit-to-stand movement, Journal of Applied Biomechanics, 27(4), 2011, 306–313. [12] Y. Mochizuki, S. Inokuchi, and K. Omura, Generating artificially mastered motions for an upper limb in baseball pitching from several objective functions, IEEE Transactions on Systems, Man and Cybernetics – Part B, 30(3), 2000, 373–382. [13] A. Kuo, The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective, Human Movement Science, 26(4), 2007, 617–656. [14] J.B. Saunders, V.T. Inman, and H.D. Eberhart, The major determinants in normal and pathological gait, Journal of Bone and Joint Surgery, American Volume, 35-A(3), 1953, 543–558. [15] K. Sohn and P. Oh, Applying human motion capture to design energy-efficient trajectories for miniature humanoids, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Vilamoura, Algarve, Portugal, 2012, 3425–3431. [16] D.M. Lofaro and P. Oh, Humanoid throws inaugural pitch at major league baseball game: Challenges, approach, implementation and lessons learned, Proc. Int. Conf. on Ubiquitous Robots and Ambient Intelligence (URAI), Daejeon, South Korea, 2012, 153–157. [17] D.M. Lofaro, R. Ellenberg, P. Oh, and J. Oh, Humanoid throwing: Design of collision-free trajectories with sparse reachable maps, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Vilamoura, Algarve, Portugal, 2012, 1519–1524. [18] W. Ma, S. Xia, J.K. Hodgins, X. Yang, C. Li, and Z. Wang, Modeling style and variation in human motion, Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Aire-la-Ville, Switzerland, 2010, 21–30. [19] J.H. Kim, Y. Xiang, J. Yang, J.S. Arora, and K. Abdel-Malek, Dynamic motion planning of overarm throw for a biped human multibody system, Multibody System Dynamics, 24(1), 2010,1–24. [20] J.H. Kim, Optimization of throwing motion planning for whole-body humanoid mechanism: Sidearm and maximum distance, Mechanism and Machine Theory, 46(4), 2011, 438–453. [21] J.H. Kim, J. Yang, and K. Abdel-Malek, Planning load-effective dynamic motions of highly articulated human model for generic tasks, Robotica, 27(5), 2009, 739–747. [22] J.M. Hollerbach, A recursive Lagrangian formulation of maniputator dynamics and a comparative study of dynamics formulation complexity, IEEE Transactions on Systems, Man and Cybernetics, 10(11), 1980, 730–736. [23] R.W. Toogood, Efficient robot inverse and direct dynamics algorithms using microcomputer based symbolic generation, Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), Scottsdale, AZ, USA, 1989, 1827–1832. [24] J.H. Kim, Y. Xiang, R.M. Bhatt, J. Yang, H.J. Chung, J.S. Arora, and K. Abdel-Malek, Generating effective whole-body motions of a human-like mechanism with efficient ZMP formulation, International Journal of Robotic Automation, 24(2), 2009, 125–136. [25] M. Vukobratovic and B. Borovac, Zero-moment point-thirty five years of its life, International Journal of Humanoid Robot, 1(1), 2004, 157–173. [26] J.H. Kim, Motion planning of optimal throw for whole-body humanoid, Proc. IEEE-RAS Int. Conf. on Humanoid Robots, Nashville, TN, 2010, 21–26. [27] A. Cappozzo, F. Catani, U. Della Croce, and A. Leardini, Position and orientation in space of bones during movement: Anatomical frame definition and determination, Clinical Biomechanics, 10(4), 1995, 171–178. [28] U. Della Croce, A. Cappozzo, and D.C. Kerrigan, Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles, Medical and Biological Engineering and Computing, 37(2), 1999, 155–161. [29] T. Lu and J. O’Connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints, Journal of Biomechanics, 32(2), 1999, 129–134. [30] G. Nicolas, F. Multon, G. Berillon, and F. Marchal, From bone to plausible bipedal locomotion using inverse kinematics, Journal of Biomechanics, 40(5), 2007, 1048–1057. [31] E. Oyama, A. Agah, K.F. MacDorman, T. Maeda, and S. Tachi, A modular neural network architecture for inverse kinematics model learning, Neurocomputing, 38–40, 2001, 797–805. [32] E. Roux, S. Bouilland, A.-P. Godillon-Maquinghen, and D. Bouttens, Evaluation of the global optimisation method within the upper limb kinematics analysis, Journal of Biomechanics, 35(9), 2002, 1279–1283. [33] A.J. van den Bogert and A. Su, A weighted least squares method for inverse dynamic analysis, Computer Methods in Biomechanics and Biomedical Engineering, 11(1), 2008, 3–9. [34] X. Wu, L. Ma, Z. Chen, and Y. Gao, A 12-DOF analytic inverse kinematics solver for human motion control, Journal of Information and Computer Science, 1(1), 2004, 137–141. [35] Y. Xiang, S. Rahmatalla, J.S. Arora, and K. Abdel-Malek, Enhanced optimisation-based inverse kinematics methodology considering joint discomfort, International Journal of Human Factors Modelling and Simulation, 2(1), 2011, 111–126. [36] N. Matsunaga, Y. Okimura, and S. Kawaji, Kinematic analysis of human lifting movement for biped robot control, Proc. IEEE Int. Workshop on Advanced Motion Control, Kawasaki, Japan, 2004, 421–426. [37] M.E. Nadzadi, D.R. Pedersen, H.J. Yack, J.J. Callaghan, and T.D. Brown, Kinematics, kinetics, and finite element analysis of commonplace maneuvers at risk for total hip dislocation, Journal of Biomechanics, 36(4), 2003, 577–591. [38] R.F. Escamilla, G.S. Fleisig, S.W. Barrentine, N. Zheng, and J.R. Andrews, Kinematic comparisons of throwing different types of baseball pitches, Journal of Applied Biomechanics, 14, 1998, 1–23. [39] S. Nakaoka, A. Nakazawa, K. Yokoi, and K. Ikeuchi, Leg motion primitives for a dancing humanoid robot, Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), New Orleans, LA, USA, 2004, 610–615. [40] J. Fuller, L.-J. Liu, M.C. Murphy, and R.W. Mann, A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers, Human Movement Science, 16(2–3), 1997, 219–242. [41] C. Reinschmidt, A.J. van den Bogert, B.M. Nigg, A. Lundberg, and N. Murphy, Effect of skin movement on the analysis of skeletal knee joint motion during running, Journal of Biomechanics, 30(7), 1997, 729–732. [42] A. Peters, B. Galna, M. Sangeux, M. Morris, and R. Baker, Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review, Gait Posture, 31(1), 2010, 1–8. [43] B.A. MacWilliams, T. Choi, M.K. Perezous, E.Y.S. Chao, and E.G. McFarland, Characteristic ground-reaction forces in baseball pitching, American Journal of Sports Medicine, 26(1), 1998, 66–71. [44] D. Lofaro, S. Chunyang, and P. Oh, Humanoid pitching at a major league baseball game: Challenges, approach, implementation and lessons learned, IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), Osaka, Japan, 2012.
Important Links:
Go Back