SEMI-INFINITE PROGRAMMING TO SOLVE ARMED ROBOT TRAJECTORY PROBLEM USING RECURRENT NEURAL NETWORK

Alaeddin Malek, Leila Jafarian-Khaled Abad, and Samaneh Khodayari-Samghabadi

References

  1. [1] A. Gasparetto and V. Zanotto, Optimal trajectory planningfor industrial robots, Advances in Engineering Software, 41(4),2010, 548–556.
  2. [2] A. Gasparetto and V. Zanotto, A technique for time-jerkoptimal planning of robot trajectories, Robotics and Computer-Integrated Manufacturing, 24 (3), 2008, 415–426.
  3. [3] R. Hettich and K.O. Kortanek, Semi-infinite programming:theory, methods and applications, Journal-SIAM Review, 35,1993, 380–429.
  4. [4] A.I.F. Vaz, E.M.G.P. Fernandes, and M.P.S.F. Gomes, NSIPS:117nonlinear semi-infinite programming solver, Technical Report,2004.
  5. [5] R. Hettich, An implementation of a discretization method forsemi-infinite programming, Mathematical Programming, 34(3),1986, 354–361.
  6. [6] M. L´opez and G. Still, Semi-infinite programming, EuropeanJournal of Operational Research, 180(2), 2007, 491–518.
  7. [7] M.A. Goberna and M.A. L´opez, Linear semi-infinite optimiza-tion (New York: John Wiley & Sons, 1998).
  8. [8] H. Yang, W. Wang, and J. Sun, Control point adjustmentfor B-spline curve approximation, Journal Computer-AidedDesign, 36(7), 2004, 639–652.
  9. [9] A.I.F. Vaz, E.M.G.P. Fernandes, and M. Gomes, Robot tra-jectory planning with semi-infinite programming, EuropeanJournal of Operational Research, 153(3), 2004, 607–617.
  10. [10] S.P. Marin, Optimal parametrization of curves for robot trajec-tory design, IEEE Transactions on Automatic Control, 23(2),1998, 209–214.
  11. [11] M.H. Chi, Linear semi-infinite and nondifferentiable program-ming methods for robot trajectory planning problems, Ph.D.thesis, University of Iowa, 1991.
  12. [12] R.L. Burden and J.D. Faires, Numerical analysis (Boston,MA: PWS Publishing Company, 1993).
  13. [13] G. Still, Discretization in semi-infinite programming: the rateof convergence, Mathematical Programming Series A, 91, 2001,53–69.
  14. [14] R. J. Vanderbei, Linear programming: foundations and exten-sions (New York: Springer, 2008).
  15. [15] A. Malek and A. Yari, Primal-dual solution for the linearprogramming problems using neural networks, Applied Math-ematics and Computation, 167(1), 2005, 198–211.
  16. [16] K.V. Nguen, A nonlinear neural network for solving linearprogramming problems, ISMP-2000, 17th Int. Symp. on Math-ematical Programming, 2000, 7–11.
  17. [17] A.I.F. Vaz, Applications, methods and tools for nonlinearsemi-infinite programming, Ph.D. thesis, University of Minho,2003.

Important Links:

Go Back