PATH PLANNING FOR VISUAL SERVOING AND NAVIGATION USING CONVEX OPTIMIZATION

Abdul Hafez Abdul Hafez, Anil K. Nelakanti, and C.V. Jawahar

References

  1. [1] A.H. Abdul Hafez, Visual servo control by optimizing hybrid objective function with visibility and path constraints, Journal of Control Engineering and Applied Informatics, 16(2), June 2014, 120–129.
  2. [2] M. Kazemi, K. Gupta, and M. Mehrandezh, Path-planningfor visual servoing: A review and issues, in G. Chesi andK. Hashimoto (eds.), Visual servoing via advanced numericalmethods (LNCI, Springer, 2010), vol. 401, ch. 11, 189–208.
  3. [3] M. Kazemi, K.K. Gupta, and M. Mehrandezh, Randomizedkinodynamic planning for robust visual servoing, IEEE Transactions on Robotics, 29(5), 2013, 1197–1211.
  4. [4] Y. Mezouar and F. Chaumette, Path planning for robust image-based control, IEEE Transactions on Robotics and Automation, 18(4), Aug 2002, 534–549.
  5. [5] M. Kazemi, K.K. Gupta, and M. Mehrandezh, Path planningfor image-based control of wheeled mobile manipulators, IROS, 2012, 5306–5312.
  6. [6] Y. Mezouar and F. Chaumette, Optimal camera trajectorywith image-based control, International Journal of RoboticsResearch, 22(10–11), 2003, 781–804.
  7. [7] A.H. Abdul Hafez, A. Nelakanti, and C.V. Jawahar, Pathplanning approach to visual servoing with feature visibility constraints: A convex optimization based solution, IEEE/RSJ International Conf. on Intelligent Robots and Systems, IROS’07, San Diego, CA, October 2007.
  8. [8] G. Chesi, Visual servoing path planning via homogeneous forms and LMI optimizations, IEEE Transaction on Robotics, 25(2), February 2009, 281–291.
  9. [9] S. Boyd and L. Vandenberghe, Convex optimization(Cambridge University Press, New York, NY: 2004).
  10. [10] R. Hartley and F. Kahl, Optimal algorithms in multiview geometry, in Y. Yagi, S.B. Kang, I.S. Kweon, and H. Zha (eds.), Computer vision – ACCV 2007, ser. (LNCS, Springer, 2007), vol. 4843, 13–34.
  11. [11] R.I. Hartley and F. Kahl, Global optimization through rotation space search, International Journal of Computer Vision, 82(1), 2009, 64–79.
  12. [12] R. Hartley and F. Kahl, Global optimization through searching rotation space and optimal estimation of the essential matrix, Proc. 10th IEEE International Conf. on Computer Vision, ICCV’07, Rio de Janeiro, Brazil, October 2007.
  13. [13] A.H. Abdul Hafez and C.V. Jawahar, Visual servoing byoptimization of a 2D/3D hybrid objective function, IEEE Int. Conf. on Robotics and Automation, ICRA’07, Roma, Italia, April 2007.
  14. [14] A.H. Abdul Hafez, S. Achar, and C. Jawahar, Visual servoing based on gaussian mixture models, IEEE International Conference on Robotics and Automation, 2008. ICRA 2008. IEEE, 2008, pp. 3225–3230.
  15. [15] S. Hutchinson, G. Hager, and Cork, A tutorial on visual servo control, IEEE Transactions on Robotics and Automation, 12(5), October 1996, 651–670.
  16. [16] Y. Mezouar and F. Chaumette, Model-free optimal trajectories in the image space: Application to robot vision control, IEEE International Conf. on Computer Vision and Pattern Recognition, CVPR’01, vol. 1, Kaui, Hawaii, December 2001, 1115–1162.
  17. [17] J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for op-timization over symmetric cones, Optimization Methods andSoftware, 1999, vol. 11–12, 625–653, special issue on Interior Point Methods (CD supplement with software).
  18. [18] J. Lfberg, Yalmip: A toolbox for modeling and optimization in MATLAB, in Proc. of the CACSD Conf., Taipei, Taiwan, 2004. [Online]. Available: http://control.ee.ethz.ch/joloef/yalmip.php.

Important Links:

Go Back