Weiwei Shang and Shuang Cong
[1] J.P. Merlet, Parallel robots. 2nd ed. (Dordrecht, the Netherlands: Springer, 2006). [2] J. Wu, T.M. Li, J.S. Wang, and L.P. Wang, Performanceanalysis and comparison of planar 3-DOF parallel manipulators with one and two additional branches, Journal of Intelligent and Robotic Systems. 72(1), 2013, 73–82. [3] A. M¨uller and T. Hufnagel, Model-based control of redundantly actuated parallel manipulators in redundant coordinates, Robotics and Autonomous Systems, 60(4), 2012,563–571. [4] J. Gallardo-Alvarado, G. Alic, and L. P´erez-Gonz´alez, A new family of constrained redundant parallel manipulators, Multibody System Dynamics, 23(1), 2010, 57–75. [5] G. Alici and B. Shirinzadeh, Optimum dynamic balancingof planar parallel manipulators based on sensitivity analysis, Mechanism and Machine Theory, 41(12), 2006, 1520–1532. [6] N. Farhat, V. Mata, A. Page, and F. Valero, Identification of dynamic parameters of a 3-DOF RPS parallel manipulator, Mechanism and Machine Theory, 43(1), 2008, 1–17. [7] G. Legnani, D. Tosi, R. Adamini, and I. Fassi. Calibration of parallel kinematic machines: theory and applications, in Kin-Huat Low (ed.), Industrial robotics: programming, simulation and application (Mammendorf, Germany: Pro Literatur Verlag, 2007), 171–194. [8] P. Renaud, A.Vivas, N. Andreff, P. Poignet, P. Martinet,F. Pierrot, and O. Company, Kinematic and dynamic identi-fication of parallel mechanisms, Control Engineering Practice, 14(9), 2006, 1099–1109. [9] A. Rauf, S.G. Kim, and J. Ryu, Complete parameter iden-tification of parallel manipulators with partial pose information using a new measurement device, Robotica, 22(6), 2004, 689–695. [10] Y. Liu, B. Liang, C. Li, L.J. Xue, S.H. Hu, and Y.S. Jiang, Calibration of a steward parallel robot using genetic algorithm, Proc. Int. Conf. Mechatronics Autom, Harbin, Aug. 2007, 2495–2500. [11] W.J. Jeong, H.S. Kim, and K.Y. Kwak, Kinematics andworkspace analysis of a parallel wire mechanism for measuring a robot pose, Mechanism and Machine Theory, 34(6), 1999, 825–841. [12] A. Pashkevich, D. Chablat, and P. Wenger, Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions, Mechatronics, 19(4), 2009, 478–488. [13] P. Renaud, N. Andreff, J.M. Lavest, and M. Dhome, Simplifying the kinematic calibration of parallel mechanisms using vision-based metrology, IEEE Transactions on Robotics, 22(1), 2006, 12–22. [14] Q.S. Xu, Y.M. Li, and N. Xi, Design, fabrication, and visual servo control of an XY parallel micromanipulator with piezo-actuation, IEEE Transactions on Automation Science and Engineering, 6(4), 2009, 710–719. [15] W. Khalil and S. Besnard, Self calibration of Stewart-Gough parallel robots without extra sensors. IEEE Transactions on Robotics and Automation, 15(6), 1999, 1116–1121. [16] H. Zhuang, Self-calibration of parallel mechanisms with a case study on Stewart platforms. IEEE Transactions on Robotics and Automation, 13(3), 1997, 387–397. [17] O. Bebek, M.J. Hwang, M.C. Cavusoglu, Design of a par-allel robot for needle-based interventions on small animals, IEEE/ASME Transactions on Mechatronics, 18(1), 2013, 62–73. [18] A. M¨uller and M. Ruggiu, Self-calibration of redundantly actuated PKM exploiting kinematic landmarks. Computational kinematics, Proceedings of the 6th International Workshop on Computational Kinematics, Netherlands, Springer, 2014, 93–102. [19] Y.K. Yiu, J. Meng, and Z.X. Li, Auto-calibration for a parallel manipulator with sensor redundancy, Proc. Int. Conf. Robot. Autom, Leuven, Belgium, 2003, 3660–3665. [20] Y.X. Zhang, S. Cong, Z.X. Li, and S.L. Jiang, Auto-calibration of a redundant parallel manipulator based on the projected tracking error, Archives of Applied Mechanics, 77(10), 2007, 697–706. [21] C.S. Feng, S. Cong, H. Shan, W.W. Shang, and Y.X. Zhang, Self-calibration for kinematic parameters of a redundant planar two-degree-of freedom parallel manipulator using evolutionary algorithms, Engineering Optimization, 14(4), 2009, 385–398. [22] D. Zhang and Z. Gao, Optimal kinematic calibration of parallel manipulators with pseudoerror theory and cooperative coevolutionary network, IEEE Transactions on Industrial Electronics, 59(8), 2012, 3221–3231. [23] M.S. Tsai and W.H. Yuan, Dynamic modeling and decentralized control of a 3 PRS parallel mechanism based on constrained robotic analysis, Journal of Intelligent and Robotic Systems, 63(3–4), 2011, 525–545. [24] B. Armstrong, On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics, International Journal of Robotics Research, 8(6), 1989, 28–48. [25] M. Gautier and W. Khalil, Exciting trajectories for the identification of base inertial parameters of robots, International Journal of Robotics Research, 11(4), 1992, 362–375. [26] G. Calafiore, M. Indri, and B. Bona, Robot dynamic calibration: optimal excitation trajectories and experimental parameter estimation. Journal of Robotic Systems, 18(2), 2001, 55–68. [27] J. Swevers, C. Ganseman, D.B. Tukel, J.D. Schutter, and H.V. Brussel, Optimal robot excitation and identification, IEEE Transactions on Robotics and Automation, 13(5), 1997, 730–740. [28] K.J. Park, Fourier-based optimal excitation trajectories for the dynamic identification of robots. Robotica, 24(5), 2006, 625–633. [29] W.W. Shang and Cong S, Exciting trajectories design for the dynamic identification of parallel manipulators, Proceedings of the 18th World Congress of the International Federation of Automation Control, Milano, 2011, 10287–10292. [30] M. Grotjahn, B. Heimann, and H. Abdellatif, Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control, Multibody System Dynamics. 11(3), 2004, 273–294. [31] J. Wu, J.S. Wang, and L.P. Wang Identification of dynamic parameter of 3DOF parallel manipulator with actuation redundancy, Journal of Manufacturing Science and Engineering, 130(4), 2008, 1005–1011. [32] S. Guegan, W. Khalil, and P. Lemoine, Identification of the dynamic parameters of the Orthoglide, Proc. IEEE Int. Conf. Robotics and Automation, Taipei, 2003, 3272–3277. [33] V. Nabat, O. Company, F. Pierrot, and P. Poignet, Dynamic modeling and identification of par4, a very high speed parallel manipulator, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, 2006, 496–501. [34] H. Abdellatif and B. Heimann, Advanced model-based control of a 6-DOF Hexapod robot: a case study. IEEE/ASMETransactions on Mechatronics, 15(2), 2010, 269–279. [35] H. Abdellatif and B. Heimann, Experimental identification of the dynamics model for 6-DOF parallel manipulators, Robotica, 28(3), 2010, 359–368. [36] M. Diaz-Rodriguez, A. Valera, V. Mata, and M.Valles, Model-based control of a 3-DOF parallel robot based on identified relevant parameters, IEEE/ASME Transactions on Mechatronics, 18(6), 2012, 1737–1744. [37] M. Diaz-Rodriguez, V. Mata, A. Valera, and A. Page, Amethodology for dynamic parameters identification of 3-DOFparallel robots in terms of relevant parameters, Mechanismand Machine Theory, 45(9), 2012, 1337–1356. [38] W.W. Shang and S. Cong, Nonlinear computed torque control for a high speed planar parallel manipulator. Mechatronic. 19(6), 2009, 987–992. [39] Y.X. Zhang, S. Cong, W.W. Shang, Z.X. Li, and S.L. Jiang, Modeling, identification and control of a redundant planar 2-DOF parallel manipulator. International Journal of Control, Automation and Systems, 5(5), 2007, 559–569. [40] W.W. Shang, S. Cong, and F.R. Kong, Identification ofdynamic and friction parameters of a parallel manipulator with actuation redundancy, Mechatronics, 20(2), 2010, 192–200. [41] W.W. Shang, S. Cong, and Y. Ge, Adaptive computed torque control for a parallel manipulator with redundant actuation, Robotica, 30(3), 2012, 457–466. [42] H. Cheng, Y.K. Yiu, and Z.X. Li, Dynamics and controlof redundantly actuated parallel manipulators, IEEE/ASMETransactions on Mechatronics, 8(4), 2003, 483–491. [43] W.W. Shang, S. Cong, and Y.X. Zhang, Nonlinear friction compensation of a 2-DOF planar parallel manipulator, Mechatronics, 18(7), 2008, 340–346. [44] M. Gautier and Ph. Poignet, Extended Kalman filtering and weighted least squares dynamic identification of robot, Control Engineering Practice, 9(12), 2001, 1361–1372. [45] E. Villagrossi, G. Legnani, N. Pedrocchi, F. Vicentini, L.M. Tosatti, F. Abb`a, and A. Bottero, Robot dynamic model identification through excitation trajectories minimizing the correlation influence among essential parameters, Proc. 11th International Conference on Informatics in Control, Automation and Robotics, Vienna, September 2014, 475–482.
Important Links:
Go Back