ADAPTIVE CONTROL OF A CABLE-DRIVEN SERPENTINE MANIPULATOR BASED ON NEURAL NETWORK OBSERVER

Liang Han, Zhentao Li, and Yunzhi Huang

References

  1. [1] Z. Zhou, X.D. Zheng, Z. Chen, X. Wang, B. Liang, andQ. Wang, Dynamics modeling and analysis of cable-drivensegmented manipulator considering friction effects, Mechanismand Machine Theory, 169(13), 2022, 104633.
  2. [2] R. Buckingham and A. Graham, Nuclear snake-arm robots,Industrial Robot, 39(1), 2012, 6–11.
  3. [3] T.L. Liu, Z.G. Mu, W.F. Xu, T.W. Yang, K. You, H.M. Fu, andY.M. Li, Improved mechanical design and simplified motionplanning of hybrid active and passive cable-driven segmentedmanipulator with coupled motion, Proc. of IEEE/RSJInternational Conf. on Intelligent Robots and Systems, Macau,China 3-8 November 2019, 5978–5983.
  4. [4] P.E. Dupont, N. Simaan, H. Choset, and C. Rucker, Continuumrobots for medical interventions, Proceedings of the IEEE,110(7), 2022, 847–870.
  5. [5] J.Q. Peng, W.F. Xu, and T.W. Yang, Dynamic modeling andtrajectory tracking control method of segmented linkage cable-driven hyper-redundant robot, Nonlinear Dynamics, 101, 2020,233–253.9
  6. [6] W.F. Xu, T.T. Liu, and Y. Li, Kinematics, dynamics,and control of a cable-driven hyper-redundant manipu-lator, IEEE Transactions on Mechatronics, 23(4), 2018,1693–1704.
  7. [7] H.Y. Gu, C. Wei, Z.M. Zhang, and Y. Zhao, Experimentalstudy on motion control of rope-driven snake manipulator usingvelocity mapping method, Journal of Intelligent & RoboticSystems, 100(3), 2020, 879–897.
  8. [8] Q.M. Luo, Q. Hu, Y. Zhang, and Y. Sun, Segmented hybridmotion-force control for a hyper-redundant space manipulator,Aerospace Science and Technology, 131, 2022, 107981.
  9. [9] G.D. Qin, H.P. Wu, and A.H. Ji, Equivalent dynamic analysisof a cable-driven snake arm maintainer, Applied Sciences,12(15), 2022, 7494.
  10. [10] A. Bajo and N. Simaan, Hybrid motion/force control of multi-backbone continuum robots, The International Journal ofRobotics Research, 35(4), 2016, 422–434.
  11. [11] A.A. Abu, S. Khoo, and M. Norton, Robust control ofcontinuum robots using Cosserat rod theory, Mechanism andMachine Theory, 131, 2019, 48–61.
  12. [12] A.A. Abu, S. Khoo, and M. Norton, Multi-surface sliding modecontrol of continuum robots with mismatched uncertainties,Meccanica, 54(14), 2019, 2307–2316.
  13. [13] G.C. Niu, L. Wang, and G.H. Zong, Attitude control based onfuzzy logic for continuum aircraft fuel tank inspection robot,Journal of Intelligent & Fuzzy Systems, 29(6), 2015, 2495–2503.
  14. [14] J.Q. Peng, C. Zhang, D.M. Ge, and Y. Han, Two trajectorytracking control methods for space hyper-redundant cable-driven robots considering model uncertainty, Multibody SystemDynamics, 56(2), 2022, 123–152.
  15. [15] T.N. Do, T. Tjahjowidodo, M.W.S. Lau, and S.J. Phee,Position control of asymmetric non-linearities for a cable-conduit mechanism, IEEE Transactions on Automation Scienceand Engineering, 14(3), 2017, 1515–1523.
  16. [16] J.L. Fan, L. Jin, Z. Xie, S. Li, and Y. Zheng, Data-driven motion-force control scheme for redundant manipulators: A kinematicperspective, IEEE Transactions on Industrial Informatic,18(8), 2022, 5338–5347.
  17. [17] Y.N. Lou, H.Y. Lin, P.K. Quan, D.B. Wei, and S.C. Di,Robust adaptive control of fully constrained cable-driven serialmanipulator with multi-segment cables using cable tensionsensor measurements, Sensors, 21(5), 2021, 1623.
  18. [18] J. Piao, E.S. Kim, H. Choi, C.B. Moon, E. Choi, J.O. Park,and C.S. Kim, Indirect force control of a cable-driven parallelrobot: Tension estimation using artificial neural networktrained by force sensor measurements, Sensors, 19(11), 2019,2520.
  19. [19] G.D. Qin, H.P. Wu, Y. Cheng, H. Pan, W. Zhao, S. Shi, Y. Song,and A. Ji, Adaptive trajectory control of an under-actuatedsnake robot, Applied Mathematical Modelling, 106(14), 2022,756–769.
  20. [20] Y. Nakazawa and S. Matsunaga, Study on observer gain inposition sensorless control of switched reluctance motor usingstate observer, Proc. 2020 23rd International Conf. on ElectricalMachines and Systems, Hamamatsu, Japan, 24-27 November2020, 945–949.
  21. [21] D. Gerbet and K. Robenack, A high-gain observer for embeddedpolynomial dynamical systems, Machines, 11(2), 2023, 190.
  22. [22] S.H. Ding, Q.K. Hou, and H. Wang, Disturbance-observer-based second-order sliding mode controller for speed controlof PMSM drives, IEEE Transactions on Energy Conversion,38(1), 2023, 100–110.
  23. [23] M.A. Dipak, State observer design for nonlinear systems usingneural network, Applied Soft Computing Journal, 12(8), 2012,2530–2537.
  24. [24] X. Liu, C.G. Yang, Z.G. Chen, M. Wang, and C.Y. Su,Neuro-adaptive observer based control of flexible joint robot,Neurocomputing, 275, 2018, 73–82.
  25. [25] R. Zhang, B. Xu, and P. Shi, Output feedback controlof micromechanical gyroscopes using neural networks anddisturbance observer, IEEE Transactions on Neural Networksand Learning Systems, 33(3), 2022, 962–972.
  26. [26] H.Y. Gu, C. Wei, Z.M. Zhang, and Y. Zhao, Theoretical andexperimental study on active stiffness control of a two-degrees-of-freedom rope-driven parallel mechanism, ASME Journal ofMechanisms Robotics, 13(1), 2021, 011018.
  27. [27] R. Selmic and F. Lewis, Deadzone compensation in motioncontrol systems using neural networks, IEEE Transactions onAutomatic Control, 45(4), 2000, 602–613.
  28. [28] S.S. Ge and C. Wang, Adaptive neural control of uncertainMIMO nonlinear systems, IEEE Transactions on NeuralNetworks, 15(3), 2004, 674–692.
  29. [29] Z. Chen and W. Huang, RBF-neural-network-based adaptiverobust control for nonlinear bilateral teleoperation manipula-tors with uncertainty and time delay, IEEE Transactions onMechatronics, 25(2), 2020, 906–918.
  30. [30] M. Krivan, Mathematical analysis of continuous time activeand adaptive dynamics of artificial neural network in starshape, Mathematics for Applications, 4(1), 2015, 1805–3629.
  31. [31] A.Y. Sologubov and I.M. Kirpichnikova, Sigmoids superpositionfor signals approximation with a deadband for sweep in asequence of quasi-rectangular pulses, Proc. 2020 InternationalConf. on Electrotechnical Complexes and Systems, Ufa, Russia,27–30 October 2020, 1–7.

Important Links:

Go Back