Sun Jiawei,∗ Hao Jia,∗ Li Yimin,∗ and Yan Yan∗
[1] Y. Bai, Y. Guo, Q. Zhang, B. Cao, and B. Zhang, Multi-network fusion algorithm with transfer learning for greencucumber segmentation and recognition under complex naturalenvironment, Computers and Electronics in Agriculture, 194,2022, 106789. [2] B. Bayram, T.B. Duman, and G. Ince, Real time detectionof acoustic anomalies in industrial processes using sequentialautoencoders, Expert Systems, 38(1), 2021, e12564. [3] B. Chen, K. Thandiackal, P. Pati, and O. Goksel, Generativeappearance replay for continual unsupervised domain adapta-tion, Medical Image Analysis, 89, 2023 102924. [4] M. Chen, L. Yu, C. Zhi, R. Sun, S. Zhu, Z. Gao, Z. Ke,M. Zhu, and Y. Zhang, Improved faster R-CNN for fabricdefect detection based on gabor filter with genetic algorithmoptimization, Computers in Industry, 134, 2022, 103551. [5] Y. Chen, S. Chen, Y. Deng, and K. Wang, HA-Transformer:Harmonious aggregation from local to global for objectdetection, Expert Systems with Applications, 230, 2023, 120539. [6] M. Cheng, C. Xu, J. Wang, W. Zhang, Y. Zhou, and J. Zhang,MicroCrack-Net: A deep neural network with outline profile-guided feature augmentation and attention-based multiscalefusion for microcrack detection of tantalum capacitors, IEEETransactions on Aerospace and Electronic Systems,58(6), 2022,5141–5152. [7] S. Dube, W.Y. Wan, and H. Nugroho, A novel approach ofIoT stream sampling and model update on the IoT edge devicefor class incremental learning in an edge-cloud system, IEEEAccess, 9, 2021, 29180–29199. [8] S. Ebrahimi, M. Elhoseiny, T. Darrell, and M. Rohrbach,Uncertainty-guided continual learning with Bayesian neuralnetworks, 2019, arXiv:1906.02425. [9] S. Ghazarian and M.A. Nematbakhsh, Enhancing memory-based collaborative filtering for group recommender systems,Expert Systems with Applications, 42(7), 2015, 3801–3812. [10] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learningfor image recognition, in Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition, Las Vegas, NV,2016, 770–778. [11] X. He and H. Jaeger Overcoming catastrophic interferenceusing conceptor-aided backpropagation, in Proceeding of the6th International Conference on Learning Representations,Vancouver, BC, 2018, 1–11. [12] G. Hinton, Distilling the knowledge in a neural network, 2015,arXiv:1503.02531. [13] N. Hu, L. Ding, L. Men, W. Zhou, W. Zhang, and R. Yin,Dual visual inspection for automated quality detection andprinting optimization of two-photon polymerization based ondeep learning, Journal of Intelligent Manufacturing, 2024,1–13. [14] L.P. Jain, W.J. Scheirer, and T.E. Boult, Multi-class open setrecognition using probability of inclusion, in Proceeding of theECCV, Cham, 2014, 393–409. [15] A. Ji, J. Pang, and H. Qiu, Support vector machine forclassification based on fuzzy training data, Expert Systems withApplications, 37(4), 2010, 3495–3498. [16] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, Asurvey of deep learning-based object detection, IEEE Access, 7,2019,128837–128868. [17] K.S. Kalyan, A. Rajasekharan, and S. Sangeetha, AMMU: Asurvey of transformer-based biomedical pretrained languagemodels, Journal of Biomedical Informatics, 126, 2022, 103982. [18] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G.Desjardins, A.A. Rusu, K. Milan, J. Quan, T. Ramalho, A.Grabska-Barwinska, and D. Hassabis, Overcoming catastrophicforgetting in neural networks, Proceedings of the NationalAcademy of Sciences, 114(13), 2017, 3521–3526. [19] Y. Kong, L. Liu, H. Chen, J. Kacprzyk, and D. Tao, Overcomingcatastrophic forgetting in continual learning by exploringeigenvalues of Hessian matrix, IEEE Transactions on NeuralNetworks and Learning Systems, 2023. [20] Y. Li and F. Li Growing deep echo state network with supervisedlearning for time series prediction, Applied Soft Computing,128, 2022, 109454. [21] Y. Li, Z. Wang, F. Li, Y. Li, X. Zhang, H. Shi, L. Dong, andW. Ren, An ensembled remaining useful life prediction methodwith data fusion and stage division, Reliability Engineering &System Safety, 242, 2024, 109804. [22] T. Lin, Focal loss for dense object detection, 2017,arXiv:1708.02002. [23] H. Liu, Y. Zhou, B. Liu, J. Zhao, R. Yao, and Z. Shao,Incremental learning with neural networks for computervision: A survey, Artificial Intelligence Review, 56(5), 2023,4557–4589. [24] Y. Lu, E.J. Ding, J. Du, G.C. Chen, and Y. Zheng, Safetydetection approach in industrial equipment based on RSSD withadaptive parameter optimization algorithm, Safety Science,125, 2020, 104605. [25] D. Miller, L. Nicholson, F. Dayoub, and N. S¨underhauf,Dropout sampling for robust object detection in open-setconditions, in Proceeding of the IEEE International Conferenceon Robotics and Automation (ICRA), Brisbane, QLD, 2018,3243–3249. [26] R. Mohandas, M. Southern, E. O’Connell, and M. Hayesm,A Survey of incremental deep learning for defect detectionin manufacturing, Big Data and Cognitive Computing, 8(1),2024, 7. [27] H. Qu, H. Rahmani, L. Xu, B. Williams, and J. Liu, Recentadvances of continual learning in computer vision: An overview,2021, arXiv:2109.11369. [28] J. Redmon and A. Farhadi, YOLO9000: better, faster, stronger,in Proceedings of the IEEE Conference on Computer Visionand Pattern Recognition, 2017, 7263–7271. [29] S. Ren, X. Pan, W. Zhao, B. Nie, and B. Han, Dynamicgraph transformer for 3D object detection, Knowledge-BasedSystems, 259, 2023, 110085. [30] Z. Ren, F. Fang, N. Yan, and Y. Wu, State of the art in defectdetection based on machine vision, International Journal ofPrecision Engineering and Manufacturing-Green Technology,9(2), 2022, 661–691. [31] W.J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T.E.Boult, Toward open set recognition, IEEE Transactions onPattern Analysis and Machine Intelligence, 35(7), 2012,1757–1772. [32] B. Wang, P. Jiang, Z. Liu, Y. Li, J. Cao, and Y. Li,An adaptive lightweight small object detection method forincremental few-shot scenarios of unmanned surface vehicles,Engineering Applications of Artificial Intelligence, 133, 2024,107989. [33] P. Wang, H. Xiong, and H. He, Bearing fault diagnosis undervarious conditions using an incremental learning-based multi-task shared classifier, Knowledge-Based Systems, 266, 2023,110395. [34] Z. Wang, Y. Ta, W. Cai, and Y. Li, Research on aremaining useful life prediction method for degradationangle identification two-stage degradation process, MechanicalSystems and Signal Processing, 184, 2023, 109747.12 [35] P. Viola and M. Jones, Rapid object detection using aboosted cascade of simple features, in Proceedings of the IEEEComputer Society Conference on Computer Vision and PatternRecognition CVPR, Kauai, HI, 2001, 1. [36] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Richfeature hierarchies for accurate object detection and semanticsegmentation, Radioengineering, 85(9), 2021, 115–126. [37] S. Xing, Y. Lei, B. Yang, and N. Lu, Adaptive knowledgetransfer by continual weighted updating of filter kernels forfew-shot fault diagnosis of machines, IEEE Transactions onIndustrial Electronics, 69(2), 2021, 1968–1976. [38] N. Yang, Z. Wang, W. Cai, and Y. Li, Data regenerationbased on multiple degradation processes for remaining usefullife estimation, Reliability Engineering & System Safety, 229,2023, 108867. [39] S. Yin, S.X. Ding, X. Xie, and H. Luo, A review on basicdata-driven approaches for industrial process monitoring,IEEE Transactions on Industrial Electronics, 61(11), 2014,6418–6428. [40] Yuwono E I, Tjondonegoro D, Sorwar G, et al. Scalabilityof knowledge distillation in incremental deep learning for fastobject detection, Applied Soft Computing, 129, 2022, 109608. [41] F. Zenke, B. Poole, and S. Ganguli, Continual learning throughsynaptic intelligence, in Proceeding International Conferenceon Machine Learning, 2017, 3987–3995. [42] Q. Zhang, A new residual generation and evaluationmethod for detection and isolation of faults in non-linearsystems, International Journal of Adaptive Control and SignalProcessing, 14(7), 2000, 759–773. [43] T. Zhang, Z. Wang, F. Li, H. Zhong, X. Hu, W. Zhang, D.Zhang, and X. Liu, Automatic detection of surface defects basedon deep random chains, Expert Systems with Applications, 229,2023, 120472. [44] M. Zhao, C. Yue, and X. Liu, Research on milling chatteridentification of thin-walled parts based on incremental learningand multi-signal fusion, The International Journal of AdvancedManufacturing Technology, 125(9), 2023, 3925–3941. [45] A. Rodriguez, M. Sanchez, and T. Li, CBCL-PR: A cognitivelyinspired model for class-incremental learning in robotics,International Journal of Robotics and Automation, 40(3), 2024,215–230, DOI: http://dx.doi.org/10.2316/J.2024.403-012. [46] K. Wang, L. Zhao, and J. Gao, VIPeR: Visual incrementalplace recognition with adaptive mining and lifelong learning,International Journal of Robotics and Automation, 41(1), 2025,45–62, DOI: http://dx.doi.org/10.2316/J.2025.411-005. [47] W. Li, Y. Liu, J. Yang, and W. Wu, A new conjugategradient method with smoothing L1/2 regularization basedon a modified secant equation for training neural networks,Neural Processing Letters, 48(2), 2018, 955–978, DOI:http://dx.doi.org/10.1007/s11063-017-9737-9. [48] J. Yu, L. Ma, Z. Li, Y. Peng, and S. Xie, Open-world object detection via discriminative class prototypelearning, in Proceedings of the International Conference onImage Processing (ICIP), Bordeaux, 2022, 626–630, DOI:http://dx.doi.org/10.1109/ICIP46576.2022.9897461.
Important Links:
Go Back